
LLNL-JRNL-472093

Solution of the Skyrme-Hartree-Fock-Bogolyubov
equations in the Cartesian deformed
harmonic-oscillator basis. (VII) hfodd (v2.49s): a
new version of the program

N. Schunck, J. Dobaczewski, J. McDonnell, W. Satula,
J. A. Sheikh, A. Staszczak, M. Stoitsov, P. Toivanen

March 4, 2011

Computer Physics Communications

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security, LLC,
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product
endorsement purposes.

Solution of the Skyrme-Hartree-Fock-Bogolyubov

equations in the Cartesian deformed harmonic-oscillator

basis.

(VII) hfodd (v2.49s): a new version of the program.

N. Schunck,a,b,c1 J. Dobaczewski,d,e J. McDonnell,b,c W. Satu la,d J.A. Sheikh,b,c

A. Staszczak,b,c,f M. Stoitsov,b,c P. Toivanene

aPhysics Division, Lawrence Livermore National Laboratory Livermore, CA 94551, USA
bDepartment of Physics and Astronomy, University of Tennessee, Knoxville, TN 37996, USA

cOak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831, USA
dInstitute of Theoretical Physics, Faculty of Physics, University of Warsaw,

ul. Hoża 69, PL-00681 Warsaw, Poland
eDepartment of Physics, P.O. Box 35 (YFL), FI-40014 University of Jyväskylä, Finland

fDepartment of Theoretical Physics, Maria Curie-Sk lodowska University,
pl. M. Curie-Sk lodowskiej 1, 20-031 Lublin, Poland

Abstract
We describe the new version (v2.49s) of the code hfodd which solves the nuclear Skyrme

Hartree-Fock (HF) or Skyrme Hartree-Fock-Bogolyubov (HFB) problem by using the Cartesian
deformed harmonic-oscillator basis. In the new version, we have implemented the following
physics features: (i) the isospin mixing and projection, (ii) the finite temperature formalism
for the HFB and HF+BCS methods, (iii) the Lipkin translational energy correction method,
(iv) the calculation of the shell correction. A number of specific numerical methods have also
been implemented in order to deal with large-scale multi-constraint calculations and hardware
limitations: (i) the two-basis method for the HFB method, (ii) the Augmented Lagrangian
Method (ALM) for multi-constraint calculations, (iii) the linear constraint method based on
the approximation of the RPA matrix for multi-constraint calculations, (iv) an interface with
the axial and parity-conserving Skyrme-HFB code hfbtho, (v) the mixing of the HF or HFB
matrix elements instead of the HF fields. Special care has been paid to using the code on
massively parallel leadership class computers. For this purpose, the following features are now
available with this version: (i) the Message Passing Interface (MPI) framework (ii) scalable
input data routines (iii) multi-threading via OpenMP pragmas (iv) parallel diagonalization of
the HFB matrix in the simplex breaking case using the ScaLAPACK library. Finally, several
little significant errors of the previous published version were corrected.

PACS numbers: 07.05.T, 21.60.-n, 21.60.Jz

NEW VERSION PROGRAM SUMMARY

Title of the program: hfodd (v2.49s)

1E-mail: schunck1@llnl.gov

1

Catalogue number:

Program obtainable from: CPC Program Library, Queen’s University of Belfast, N. Ireland (see
application form in this issue)

Reference in CPC for earlier version of program: J. Dobaczewski, W. Satu la, B.G. Carlsson,
J. Engel, P. Olbratowski, P. Powa lowski, M. Sadziak, J. Sarich, N. Schunck, A. Staszczak, M.
Stoitsov, M. Zalewski, H. Zduńczuk, Comput. Phys. Commun. 180 (2009) 2361 (v2.40h).

Catalogue number of previous version: ADFL v2 1

Licensing provisions: GPL v3

Does the new version supersede the previous one: yes

Computers on which the program has been tested: Intel Pentium-III, Intel Xeon, AMD-Athlon,
AMD-Opteron, Cray XT4, Cray XT5

Operating systems: UNIX, LINUX, Windowsxp

Programming language used: FORTRAN-90

Memory required to execute with typical data: 10 Mwords

No. of bits in a word: The code is written in single-precision for the use on a 64-bit processor.
The compiler option -r8 or +autodblpad (or equivalent) has to be used to promote all real
and complex single-precision floating-point items to double precision when the code is used on
a 32-bit machine.

Has the code been vectorised?: Yes

Has the code been parallelized?: Yes

No. of lines in distributed program: 104 209 (of which 46 901 are comments and separators)

Keywords: Hartree-Fock; Hartree-Fock-Bogolyubov; Skyrme interaction; Self-consistent mean
field; Nuclear many-body problem; Superdeformation; Quadrupole deformation; Octupole de-
formation; Pairing; Nuclear radii; Single-particle spectra; Nuclear rotation; High-spin states;
Moments of inertia; Level crossings; Harmonic oscillator; Coulomb field; Pairing; Point sym-
metries; Yukawa interaction; Angular-momentum projection; Generator Coordinate Method;
Schiff moments; Isospin mixing; Isospin projection, Finite temperature; Shell correction; Lipkin
method; Multi-threading; Hybrid programming model; High-performance computing.

Nature of physical problem
The nuclear mean field and an analysis of its symmetries in realistic cases are the main in-
gredients of a description of nuclear states. Within the Local Density Approximation, or for a
zero-range velocity-dependent Skyrme interaction, the nuclear mean field is local and velocity de-
pendent. The locality allows for an effective and fast solution of the self-consistent Hartree-Fock

2

equations, even for heavy nuclei, and for various nucleonic (n-particle n-hole) configurations,
deformations, excitation energies, or angular momenta. Similarly, Local Density Approximation
in the particle-particle channel, which is equivalent to using a zero-range interaction, allows for
a simple implementation of pairing effects within the Hartree-Fock-Bogolyubov method.

Method of solution
The program uses the Cartesian harmonic oscillator basis to expand single-particle or single-
quasiparticle wave functions of neutrons and protons interacting by means of the Skyrme effective
interaction and zero-range pairing interaction. The expansion coefficients are determined by
the iterative diagonalization of the mean-field Hamiltonians or Routhians which depend non-
linearly on the local neutron and proton densities. Suitable constraints are used to obtain states
corresponding to a given configuration, deformation or angular momentum. The method of
solution has been presented in: J. Dobaczewski and J. Dudek, Comput. Phys. Commun. 102
(1997) 166.

Summary of revisions

1. Isospin mixing and projection of the HF states has been implemented.
2. The finite-temperature formalism for the HFB equations has been implemented.
3. The Lipkin translational energy correction method has been implemented.
4. Calculation of the shell correction has been implemented.
5. The two-basis method for the solution to the HFB equations has been implemented.
6. The Augmented Lagrangian Method (ALM) for calculations with multiple constraints has

been implemented.
7. The linear constraint method based on the cranking approximation of the RPA matrix

has been implemented.
8. An interface between hfodd and the axially-symmetric and parity-conserving code hf-

btho has been implemented.
9. The mixing of the matrix elements of the HF or HFB matrix has been implemented.

10. A parallel interface using the MPI library has been implemented.
11. A scalable model for reading input data has been implemented.
12. OpenMP pragmas have been implemented in three subroutines.
13. The diagonalization of the HFB matrix in the simplex-breaking case has been parallelized

using the ScaLAPACK library.
14. Several little significant errors of the previous published version were corrected.

Restrictions on the complexity of the problem

Typical running time

Unusual features of the program
The user must have access to (i) the NAGLIB subroutine f02axe, or LAPACK subroutines
zhpev, zhpevx, zheevr, or zheevd, which diagonalize complex hermitian matrices, (ii) the
LAPACK subroutines dgetri and dgetrf which invert arbitrary real matrices, (iii) the LA-
PACK subroutines dsyevd, dsytrf and dsytri which compute eigenvalues and eigenfunctions
of real symmetric matrices and (iv) the LINPACK subroutines zgedi and zgeco, which invert

3

arbitrary complex matrices and calculate determinants, (v) the BLAS routines dcopy, dscal,
dgeem and dgemv for double-precision linear algebra and zcopy, zdscal, zgeem and zgemv

for complex linear algebra, or provide another set of subroutines that can perform such tasks.
The BLAS and LAPACK subroutines can be obtained from the Netlib Repository at the Uni-
versity of Tennessee, Knoxville: http://netlib2.cs.utk.edu/.

LONG WRITE-UP

1 Introduction

The method of solving the Hartree-Fock (HF) equations in the Cartesian harmonic oscilla-
tor (HO) basis was described in the publication, Ref. [1]. Five versions of the code hfodd

were previously published: (v1.60r) [2],(v1.75r) [3], (v2.08i) [4], (v2.08k) [5], and (v2.40h) [6].
The User’s Guide for version (v2.40v) is available in Ref. [7] and the code home page is at
http://www.fuw.edu.pl/~dobaczew/hfodd/hfodd.html. The present paper is a long write-up
of the new version (v2.49s) of the code hfodd. This extended version features the isospin mixing
and projection of the HF states, the finite-temperature formalism for the HF+BCS and HFB
equations, and several other major modifications. It is also built upon a hybrid MPI/OpenMP
parallel programing model which allows large-scale calculations on massively parallel computers.
In serial mode, it remains fully compatible with all previous versions. Information provided in
previous publications [2]-[6] thus remains valid, unless explicitly mentioned in the present long
write-up.

In Section 2 we briefly review the modifications introduced in version (v2.49s) of the code
hfodd. We distinguish between features implementing (i) new physics modeling capabilities,
(ii) new numerical techniques and (iii) parallel computing methods. Section 3 lists all additional
new input keywords and data values, introduced in version (v2.49s). In serial mode, the structure
of the input data file remains the same as in the previous versions, see Section 3 of Ref. [2]. In
parallel mode, two input files, with strictly enforced names, must be used: hfodd.d has the same
keyword structure as all previous hfodd input files, with the restriction that not all keywords
can be activated (see list in Sec. 3.3.1); hfodd mpiio.d contains processor-dependent data, see
Sec. 3.3.2.

2 Modifications introduced in version (v2.49s)

2.1 New Physics Features

2.1.1 Isospin Mixing and Projection

The concept of isospin symmetry, having its roots in the approximate charge independence
of the nucleon-nucleon interaction, was already introduced in nuclear physics in the 1930s by
Heisenberg and Wigner [8, 9]. Throughout the years, it has proven to be extremely powerful
and not abated by the presence of the Coulomb force – the main source of the isospin symmetry
violation in nuclei – simply because the isovector and isotensor parts of the Coulomb force are

4

much weaker than the dominant, isospin symmetry preserving components of the Coulomb and
strong interactions.

Apart from the explicit violation of the isospin symmetry due to the strong and, pre-
dominantly, Coulomb interactions, various approximate theoretical methods used in nuclear
structure calculations are often the sources of unphysical violation of this symmetry by them-
selves [10, 11, 12, 13, 14]. This specifically concerns the Hartree-Fock and Kohn-Sham theories
that employ independent-particle wave functions, which manifestly break the isospin symme-
try in N 6= Z nuclei even for isospin-conserving interactions. The most prominent effects of
this spontaneous isospin-symmetry-breaking occur, however, in the ground-state configuration
of odd-odd N = Z nuclei and in T 6= 0 excited configurations of N = Z nuclei, see Ref. [14]
and references cited therein. Hence, practical implementation of the method requires the isospin
projection and subsequent rediagonalization of the entire Hamiltonian in the isospin-projected
basis. These two major building blocks of the isospin projection method will be described be-
low. The discussion will be followed by a short presentation of the extended version of our
model including the isospin and angular-momentum projections which is needed for specific
applications including calculation of the isospin-symmetry breaking corrections to superallowed
β−decay [15, 16, 17].

The isospin projection: To remove the unphysical isospin-symmetry violation introduced
by the mean-field (MF) approximation, the code hfodd (v2.49s) was equipped with a new
tool allowing for the isospin projection after variation of an arbitrary symmetry-unrestricted
Slater determinant |Φ〉 provided by the code. The method implemented uses the standard
one-dimensional isospin-projection operator P̂ T

TzTz
:

|TTz〉 =
1

√

NTTz

P̂ T
TzTz

|Φ〉 =
2T + 1

2
√

NTTz

∫ π

0

dβT sin βT dT
TzTz

(βT) R̂(βT)|Φ〉, (1)

which allows for decomposing the Slater determinant |Φ〉,

|Φ〉 =
∑

T≥|Tz|

bTTz
|TTz〉, (2)

into good-isospin basis |TTz〉. Here, βT denotes the Euler angle associated with the rotation

operator R̂(βT) = e−iβT T̂y about the y-axis in the isospace, dT
TzTz

(βT) is the Wigner function [18],
and Tz = (N − Z)/2 is the third component of the total isospin T . The normalization factors
NTTz

, or interchangeably the expansion coefficients bTTz
, read:

NTTz
≡ |bTTz

|2 = 〈Φ|P̂ T
TzTz

|Φ〉 =
2T + 1

2

∫ π

0

dβT sin β dT
TzTz

(βT) N (βT), (3)

where
N (βT) = 〈Φ|R̂(βT)|Φ〉 (4)

stands for the overlap kernel.
The isospin projection operator is used to construct a subspace (basis) of good-isospin states

|TTz〉. Its size is controlled by the parameter εT , such that only the states |TTz〉 that have
tangible contributions, |bTTz

|2 ≥ εT , to the MF state are retained for further rediagonalization.
In practice, εT = 10−10 sets the limit of T ≤ |Tz| + 5. The good-isospin basis created in this

5

way, although of rather small dimension, is believed to capture the right balance between the
short-range strong interaction and the long-range Coulomb force (see discussion in Ref. [13]).
The parameter εT = 10−10 also ensures that the two basic quantities reflecting the accuracy of
the method, namely, the overlap (normalization) sum rule,

∑

T≥|Tz|

|bTTz
|2 = 1, (5)

and total MF energy sum rule,

EMF ≡ 〈Φ|Ĥ|Φ〉 =
∑

TT ′≥|Tz|

b∗T ′Tz
bTTz

〈T ′Tz|Ĥ|TTz〉, (6)

are both fulfilled with extremely high accuracy. The latter property is due to the fact that
the isospin-projection method is practically free from divergences plaguing particle-number and
angular-momentum [19, 20, 21, 22] methods. An analytical proof of this rather remarkable
feature of the isospin projection is given in Ref. [14].

Rediagonalization in the isospin projected basis: Expansion coefficients bT,Tz
do not

reflect the physical isospin mixing. Indeed, they are affected by the spurious isospin mixing,
which is due to the spontaneous breaking of the isospin symmetry caused by the MF approx-
imation. To calculate the true isospin mixing, one needs to rediagonalize the total nuclear
Hamiltonian in the good-isospin basis |TTz〉. The present implementation of the code hfodd

admits Hamiltonians that include the isoscalar part of the kinetic energy T̂ , isospin-invariant
Skyrme functional, V̂ S, and Coulomb force, V̂ C ; the latter can further be decomposed into the
isoscalar, V̂ C

00 , isovector, V̂ C
10 , and isotensor, V̂ C

20 , components, that is,

Ĥ = T̂ + V̂ S + V̂ C ≡ T̂ + V̂ S + V̂ C
00 + V̂ C

10 + V̂ C
20 , (7)

where

V̂ C
00(rij) =

1

4

e2

rij

(

1 +
1

3
τ̂ (i) ◦ τ̂ (j)

)

, (8)

V̂ C
10(rij) = −1

4

e2

rij

(

τ̂
(i)
10 + τ̂

(j)
10

)

, (9)

V̂ C
20(rij) =

1

4

e2

rij

(

τ̂
(i)
10 τ̂

(j)
10 − 1

3
τ̂ (i) ◦ τ̂ (j)

)

. (10)

Note, that the components V̂ C
λ0 are constructed by coupling the spherical components of the

one-body isospin operator:

τ̂10 = τ̂z, τ̂1±1 = ∓ 1√
2

(τ̂x ± iτ̂y) , (11)

where τ̂i, i = x, y, z denote Pauli matrices and symbol ◦ stands for the scalar product of isovec-
tors. Hence, from a mathematical viewpoint, they represent isoscalar, covariant rank-1 (isovec-
tor), and covariant rank-2 axial (isotensor) spherical tensor components of the Coulomb inter-
action, respectively. This mathematical property allows the use of Racah algebra in order to

6

calculate matrix elements of the Hamiltonian. The rather lengthy details concerning this specific
theoretical aspect of our model are given in Ref. [14] and will not be repeated here.

Rediagonalization of the total Hamiltonian in the good-isospin basis leads to the eigenstates:

|n, Tz〉 =
∑

T≥|Tz |

an
TTz

|TTz〉, (12)

numbered by index n. Apart of the eigenenergies En,Tz
and the amplitudes an

TTz
that define

the degree of isospin mixing, the code also provides the so-called isospin (Coulomb) mixing
coefficients or, equivalently, the isospin impurities. For the n-th eigenstate, the isospin impurity
is defined as αn

C = 1 − |an
TTz

|2max, where |an
TTz

|2max stands for the squared norm of the dominant
amplitude in the wave function |n, Tz〉, and is given in percents.

Evaluation of the isospin impurity αC is a prerequisite for determining the isospin-breaking
corrections δC to the 0+ → 0+ Fermi matrix element of the isospin raising/lowering operator
T̂±. Of particular interest in nuclear physics are the Fermi matrix elements:

|〈I = 0, T ≈ 1, Tz = ±1|T̂±|I = 0, T ≈ 1, Tz = 0〉|2 ≡ 2(1 − δC), (13)

for a set of nuclei undergoing the super-allowed beta decay, because the δC parameter is the key
nuclear quantity needed for precise nuclear tests of the conserved-vector-current hypothesis and
for the determination of the up-down matrix element in the Cabibbo-Kobayashi-Maskawa matrix
(see Ref. [23] and references quoted therein). The calculation of the Fermi matrix elements (13)
was one of the primary motivations to couple the newly developed isospin projection with the
existing angular-momentum projection [6]. Indeed, such a four-dimensional projection appears
to be absolutely necessary to get reliable representation of decaying states in daughter (parent)
|I = 0, T ≈ 1, Tz = ±1〉 and parent (daughter) |I = 0, T ≈ 1, Tz = 0〉 nuclei undergoing
the super-allowed transition, respectively (see Ref. [15]). It should be stressed, however, that
the range of applicability of the four-dimensional projection is by no means limited to the
computation of matrix elements (13) but also encompasses, in particular, various applications
in high-spin physics in N ∼ Z nuclei.

The four-dimensional isospin and angular momentum projection: The implemen-
tation of the four-dimensional projection follows rather closely the angular-momentum projec-
tion scheme adopted in version (v2.40h) of the code and described in detail in Ref. [6] (cf.
Refs. [22, 24]. Hence, in the following, we will refrain from technicalities and concentrate on
discussing the main building blocks of the method. The starting point is the good angular
momentum I and good isospin T basis generated by acting with standard angular-momentum
P̂ I

MK and isospin P̂ T
TzTz

projectors on the Slater determinant |Φ〉:

|IMK; TTz〉 = P̂ T
TzTz

P̂ I
MK |Φ〉, (14)

where M and K stand for the angular-momentum projections along the laboratory and intrinsic
z-axes, respectively. The basis composed of states |IMK; TTz〉 is over-complete. This problem is
overcome by constructing, separately for each I and T , the so-called collective subspace spanned
by the natural states:

|IM ; TTz〉(m) =
1√
nm

∑

K

η
(m)
K |IMK; TTz〉. (15)

7

The mth natural state is constructed by using the mixing amplitudes η
(m)
K that correspond to

the mth eigenstate of the norm matrix, see Eq. (9) in [6]:

∑

K ′

NTTz

KK ′η
(m)
K ′ = nm η

(m)
K . (16)

Only the eigenstates corresponding to eigenvalues nm > ζ are taken into account, with the basis
cut-off parameter ζ introduced in Ref. [6]. In this way, for each value of the angular momentum I
and isospin T , the collective subspace contains mmax(I, T) states. The overlap matrix appearing
in Eq. (16) reads:

NTTz

KK ′ = 〈Φ|P̂ T
TzTz

P̂ I
KK ′|Φ〉 =

=
(2I + 1)(2T + 1)

16π2

∫

dβT dT
TzTz

(βT)

∫

dΩ DI∗
KK ′(Ω) 〈Φ|R̂(βT)R̂(Ω)|Φ〉, (17)

where R̂(Ω) = e−iαÎze−iβÎye−iγÎz stands for the space-rotation operator, which depends on three
Euler angles Ω = (α, β, γ), and DI

KK ′(Ω) is the Wigner function.
To simultaneously take into account the K-mixing and isospin mixing, the code performs,

separately for each value of the angular momentum I, the full diagonalization of the total
Hamiltonian (7) in the n(I)-dimensional, n(I) =

∑

T≥|Tz|
mmax(I, T), collective space spanned

by natural states (15). Such a diagonalization leads to the eigenstates of the form:

|n; IM ; Tz〉 =
∑

T≥|Tz|

mmax(I,T)
∑

m=1

a
(n)
mT (I)|IM ; TTz〉(m), (18)

which are labeled by the conserved quantum numbers I, M , and Tz = (N − Z)/2, and by the
additional index n, which characterizes the K and isospin mixing. For the sake of complete-
ness, it is worth mentioning that the code also provides the K-mixed and isospin-conserving
eigenstates, which result from the diagonalization of the total Hamiltonian with all isospin-
symmetry-breaking (∆T 6= 0) matrix elements set to zero.

2.1.2 Finite-temperature Formalism

The equilibrium state of a physical system at constant temperature T and chemical potential λ
is obtained from the minimization of the grand canonical potential Ω [25, 26, 27, 28, 29]

Ω = E − TS − λN, (19)

where the energy (E), entropy (S) and particle-number (N) are statistical averages and are
given by

E = Tr(D̂Ĥ), (20)

S = −kTr(D̂lnD̂), (21)

N = Tr(D̂N̂). (22)

8

The density operator D̂ and the grand partition function Z are defined, respectively, as

D̂ =
1

Z e−β(Ĥ−λN̂) , (23)

Z = Tr
[

e−β(Ĥ−λN̂)
]

, (24)

where β = 1/kT and Ĥ is the two-body Hamiltonian. In the MF approximation, the two-body
density operator in Eq. (23) is replaced by a one-body operator. It has been demonstrated in
[25] that the variation of the grand canonical potential with respect to the density operator D̂
leads to HFB equations that are formally equivalent to the T = 0 equations, namely

(

h − λ ∆
−∆∗ −h∗ + λ

) (

Uµ

Vµ

)

= Eµ

(

Uµ

Vµ

)

, (25)

where h and ∆ are the Hartree-Fock and pairing potentials, and are obtained from the energy
density functional as usual. The inclusion of finite temperature in the formalism is achieved
by generalizing the expression of the density matrix and pairing tensor. In configuration space,
they read [29]

ρ = UfU † + V ∗(1 − f)V T , (26)

κ = UfV † + V ∗(1 − f)UT , (27)

where the quantity “f” stands for the Fermi function, defined as,

fµ =
1

1 + eβEµ
, (28)

with Eµ the µth quasi-particle energy. In coordinate space, their expression becomes

ρ(rσ, r′σ′) =
∑

0≤Eµ≤Emax

{

fµU
(µ)(rσ)U (µ)∗(r′σ′) + (1 − fµ)V (µ)∗(rσ)V (µ)(r′σ′)

}

, (29)

κ(rσ, r′σ′) =
∑

0≤Eµ≤Emax

{

fµU
(µ)(rσ)V (µ)∗(r′σ′) + (1 − fµ)V (µ)∗(rσ)U (µ)(r′σ′)

}

. (30)

All additional densities (kinetic, spin-current, etc.) are derived from the particle density (29).
In hfodd, the conventional pairing tensor is replaced by the pairing density ρ̃(rσ, r′σ′) obtained
according to: ρ̃(rσ, r′σ′) = −2σ′κ(rσ, r′ − σ′), see [30].

The code hfodd implements the finite-temperature formalism in the HFB and HF+BCS
modes. For the latter case, we refer to Sec. 5 of [25] for the details of the expressions coded.
For the former case, we would like to emphasize that the calculation of the Fermi level λ needs
to be modified at T > 0. Let us recall that the adjustment of λ in hfodd is based on BCS
formula [30]: given the equivalent spectrum of single-particle (s.p.) states εµ and pairing gaps
∆µ, the particle number is computed according to:

N =
∑

µ

[

v2
µ + (u2

µ − v2
µ)fµ

]

, (31)

9

with the Fermi functions fµ of Eq. (28) and the occupation factors given by:

v2
µ =

1

2

[

1 − εµ − λ

EBCS
µ

]

, u2
µ = 1 − v2

µ, (32)

with EBCS
µ =

√

(εµ − λ)2 + ∆2
µ. When applying the Newton-Raphson method to determine λ by

the condition that N = N0, the implicit dependence of the fµ on λ must be taken into account.
This is done by updating the fµ at each λ according to:

fµ(λ) =
1

1 + eβEBCS
µ

, (33)

and introducing the corresponding additional term ∂fµ/∂λ in the derivative ∂N/∂λ. The con-
tribution from the thermal occupation factors is crucial for the convergence in the unpaired
regime. Note that in the case of zero-range pairing interactions, there can be stability issues
for low cut-offs near the phase transition. Recently, the finite temperature extension of hfodd

has been used in a systematic study of fission paths and barriers of actinide and superheavy
elements [31, 32].

2.1.3 Lipkin Translational Energy Correction

According to the Lipkin method [33, 34], the linear-momentum projected energy of a system at
rest can be calculated without the actual projection as:

EΦ(0) = 〈Φ | Ĥ − K̂ | Φ〉, (34)

where Ĥ is the two-body effective Hamiltonian and

K̂ = kP̂2 (35)

is the Lipkin operator in the quadratic approximation, P̂ =
∑A

i=1 p̂i is the total linear momentum
operator and k is a parameter to be determined. The optimum state is found by minimizing
the right hand side of Eq. (34). Note that the projected energy depends parametrically on
the parameter k, that is, there is no variation with respect to k (no contribution to the HF
potentials).

To determine the value of k, we proceed as follows [33, 34]. First define at each iteration the
translated wave-function |Φ(R)〉 as:

|Φ(R)〉 = e
i
h̄
R·P̂|Φ〉. (36)

Then one can show that the correcting Lipkin parameter k reads:

k =
h(R) − h(0)

p2(R) − p2(0)
, (37)

where:

h(R) =
〈Φ | Ĥ | Φ(R)〉
〈Φ | Φ(R)〉 , p2(R) =

〈Φ | P̂2 | Φ(R)〉
〈Φ | Φ(R)〉 , (38)

10

196 198 200 202 204 206 208 210 212 214 216 218

Isotope

12.2

12.4

12.6

12.8

13

13.2
E
 -

 E
_
s
td

[M

e
V

]

Figure 1: Lipkin projected energies relative to
the standard SLY4 energies, calculated for the
chain of lead isotopes. The results for exact
masses mA are given with the center-of-mass
correction added after (diamonds) and before
(circles) variation. Similarly, for the renormal-
ized masses, the results for closed sub-shells are
given with the correction added after (triangles)
and before (squares) variation.

196 200 204 208 212 216

Isotope

0.92

0.922

0.924

0.926

0.928

0.93

0.932

0.934

M
 /

 m
A

Figure 2: Ratios of the renormalized and ex-
act masses determined after (triangles) and
before (squares) variation.

are the energy and momentum kernels. The calculation of k at each iteration is therefore
straightforward, since it only requires to compute h(R) and p2(R) for a single (arbitrary) value
of the shift vector R. The parameter k plays the role of a renormalized mass. It can be compared
to the traditional so-called 1-body center-of-mass correction factor:

k0 =
h̄2

2mA
(39)

where m is the nucleon mass. Since for the translational-symmetry restoration the Gaussian
Overlap Approximation (GOA) is excellent [34], one can also approximate the Lipkin parameter
by the GOA expression [35, 34]:

kGOA = − h(R) − h(0)

4 log2(〈Φ | Φ(R)〉)R
2, (40)

where one assumes that h(R) and log(〈Φ | Φ(R)〉) can be at the shift of R approximated by a
parabola. The GOA expression is much faster to evaluate, because it does not require calculating
kernels of the two-body operator P̂2.

Figures 1–2 illustrate various aspects of the Lipkin method for linear momentum projection.
In the captions of the figures, the term ’exact mass’ refer to the quantity k0, and the term
’renormalized mass’ to the quantity k.

11

2.1.4 Shell Correction

The shell-correction method relies on the Strutinsky energy theorem, which states that the total
energy E of the nucleus reads:

E = Ebulk + δRshell, (41)

where Ebulk varies slowly with proton and neutron numbers, and δRshell is a rapidly varying
function of Z and N that captures the quantum corrections to the liquid drop [36, 37]. It was
demonstrated in [38] that such a simple decomposition remains valid when the total energy E is
computed microscopically as the integral of some energy density functional or expectation value
of a two-body effective Hamiltonian at the Hartree-Fock approximation.

The shell correction must be computed from a set of s.p. levels {ei}, which in hfodd are the
Hartree-Fock s.p. energies. In its traditional form, it is given by:

δR
(1)
shell =

∑

i∈{occ}

ei −
〈

∑

i

ei

〉

smooth

, (42)

where i ∈ {occ} represents a set of occupied states (for the HF vacuum, this is the set of
the lowest Z or N levels), and the bracket 〈. . . 〉smooth represents the Strutinsky smoothing
procedure. For the latter, we follow the prescription presented in [39] and applied on a large
scale in macroscopic-microscopic calculations, e.g., in [40].

The smoothed energy in expression (42) contains a spurious contribution from positive energy
states ei > 0 which can become problematic when approaching the dripline. This spurious term
can be removed by subtracting to Eq. (42) the smooth energy obtained for an independent gas

of particles [41, 42]. This leads to slightly different prescription δR
(2)
shell for the shell correction:

δR
(2)
shell =

∑

i∈{occ}

ei −
{〈

∑

i

ei

〉

smooth

−
〈

∑

i

ti

〉

smooth

}

, (43)

where the ti are the eigenvalues of the kinetic energy operator. The shell correction is computed
twice, for protons and neutrons. For protons, the Coulomb potential must also be taken into
account by doing the substitution ti → (t̂+V̂Cou)i. The shell correction (43) is of course evaluated

at the convergence of the self-consistent HF calculation. Both estimates δR
(1)
shell and δR

(2)
shell of the

shell correction are available in hfodd and are triggered by the value of the input parameter
IFSHEL.

2.2 New Numerical Features

2.2.1 Two-basis Method for HFB Calculations

The two-basis method was devised in Ref. [43] to solve the HFB equations in spatial coordinates.
The method allows for decoupling the particle-hole and particle-particle channels from one
another and using the same technology as that developed for the HF+BCS method, even for the
complete HFB problem. The essence of the method relies on the solution of the HFB equations in
the basis of eigenstates of the particle-hole MF operator h. In spatial coordinates, this operator
is not diagonalized in every iteration, but a set of eigenfunctions is evolved in imaginary time,

12

and thus they converge to eigenstates only at the end of the iterative process. In our case, the
self-consistent equations are solved by using the HO basis and the imaginary-time evolution is
not used; therefore, we implement the two-basis method by explicitly diagonalizing h.

600
800

1000

3000

5000

7000

14 16 18 20

Number of shells N0

Signature+Parity

Simplex

Parity

None

C
P

U
ti

m
e

[s
ec

]

(N
0/

14
)7

Figure 3: CPU times required to perform five
HFB iterations for conserved signature and
parity (circles), conserved simplex (squares),
conserved parity (down-triangles), and with
no conserved symmetry (up-triangles). Stan-
dard HFB method (open symbols) is com-
pared with requesting the diagonalization sub-
routine to return only the eigenvectors below
the cutoff energy (full symbols). The dia-
monds show the results obtained within the
two-basis method implemented for the case of
no conserved symmetry.

-12.5

-12.0

-11.5

-11.0

E
p

ai
r (

M
eV

)

-1018.6

-1018.4

-1018.2

Quasiparticle cut
Single-particle cut

E
to

ta
l (

M
eV

)

1.15

1.20

1.25

14 16 18 20

Number of shells N0

∆∆ ∆∆ n
 (

M
eV

)

Figure 4: The HFB results obtained within
the standard method corresponding to the
cutoff in the quasiparticle space (circles) and
within the two-basis method corresponding to
the cutoff in the s.p. space (squares).

This procedure has two advantages over the standard HFB method. First, the cutoff of the
configuration space can now be performed in the s.p. space and not in the quasiparticle space.
Therefore, the dimension of the HFB equations, reduced to s.p. states with energies ǫ below the
cutoff energy, ǫ ≤ ēmax, is much smaller than the full HO space. This speeds up the calculations.
Second, HFB calculations in a reduced s.p. space do not suffer from formal drawbacks related
to the cutoff in the quasiparticle space, see discussion in Ref. [44].

Figure 3 shows the CPU times required to perform the HFB calculations for 120Sn by using
the cutoff energy of ēmax = 60 MeV. The results were obtained for bases of N0 = 14–20 and for
four conserved-symmetry conditions, as indicated in the Figure. The CPU times scale as N7

0 . It
turns out that in the case of calculations performed without any conserved symmetry, the two-
basis method can be up to 30% faster than the standard HFB method. However, almost half of
this gain can be obtained by simply requesting in the standard HFB method that the HFB wave
functions be calculated only below the quasiparticle cutoff energy (see keyword CUT SPECTR).
In view of this limited gain in the CPU time, in version (v2.49s) the two-basis method is not
implemented in the remaining three conserved-symmetry conditions.

13

The two-basis method gives results that are close, but not identical, to those given by the
standard HFB method. This is illustrated in Figure 4, where the total energies (upper panel)
can differ up to 200 keV, the pairing energies (middle panel) up to 1.5 MeV, and the neutron
pairing gaps (bottom panel) up to 70 keV. Although these differences are non-negligible, they are
probably inferior to other uncertainties of the approach, and at present the physical advantages
or disadvantages of one method over the other cannot be established. One should stress that
the two methods of implementing the cutoff give exactly the same numbers of quasiparticles, so
the above difference are not caused by different sizes of the phase spaces.

2.2.2 Augmented Lagrangian Method

Multi-constrained EDF calculations are a crucial ingredient of a number of nuclear structure ap-
plications. The microscopic description of high-spin states is based on the cranking model, which
requires a constraint on the value of the total angular momentum. Modeling the fission process
involves the calculation of multi-dimensional potential energy surfaces, where the constraints are
imposed on expectation values of the multipole moments. Most generally, beyond-mean-field
applications, or multi-reference EDF, rely on a basis of constrained MF states used to generate
collective motion.

In previous versions of hfodd, constraints on the nuclear shape took the standard quadratic
form, see Eq. (22) in [1]. This so-called quadratic penalty method was chosen to avoid the
pitfalls of the method of Lagrange multipliers (linear constraints), which often fails to converge.
The quadratic penalty method is usually very fast and robust, but does not always yield the
desired solution: the expectation value of the multipole moments at convergence may differ,
sometimes significantly, from the requested values. In addition, it depends rather sensitively on
the stiffness parameter, which controls the magnitude of the corrective term.

The Augmented Lagrangian Method (ALM) provides a valuable alternative for multi-const-
rained calculations [45, 46]. It is a general algorithm which aims at minimizing a scalar function
E(x) of the vector x under a set of constraints gi(x) = q0

i (the so-called finite-dimensional,
equality-constrained nonlinear optimization problem). In practice, it can simply be viewed as
a smart combination of both the linear and quadratic penalty methods. Adopting the same
notations as in Sec. 2.3 of [1], the total energy takes the form:

E ′ = E −
∑

λµ

Lλµ(〈Q̂λµ〉 − Q̄λµ) +
∑

λµ

Cλµ(〈Q̂λµ〉 − Q̄λµ)2, (44)

where Lλµ is the Lagrange parameter for the multipole (λ, µ), Cλµ is the corresponding stiffness

and Q̄λµ the requested value for the multipole moment Q̂λµ. Note that the minus sign for the
linear constraint term is a matter of convention. While the stiffness is an input parameter that
remains constant along the iterations, Lλµ has to be re-adjusted. At iteration m + 1, the new
Lagrange parameter reads:

L
(m+1)
λµ = L

(m)
λµ − 2Cλµ(〈Q̂λµ〉(m) − Q̄λµ). (45)

For a EDF solver already implementing the quadratic penalty method, adding the ALM is
extremely simple: (i) The linear term in Eq. (44) must be added to the total energy, (ii) the

matrix elements of the corresponding HF potential U (m) = −∑

λµ L
(m)
λµ Q̂λµ must be added to the

14

HF(B) matrix, and (iii) the Lagrange parameter must be updated at every iteration according
to Eq. (45). The method induces almost no computational overhead, is very robust, and always
gives very precisely the requested solution, see [47].

2.2.3 Linear Constraints Based on the RPA Matrix

The ALM method does not make any specific hypotheses as to how the function E(x) is com-
puted. Within the nuclear EDF, the function E(x) is the total energy of the nucleus, and is itself
obtained as the solution to a variational problem. One may therefore take advantage of this
additional information to adapt the standard optimization algorithm with linear constraints.
Such an approach was proposed already 30 years ago in the context of the self-consistent nu-
clear MF theory with finite range effective forces [48]. At every iteration, an estimate of the
QRPA matrix at the cranking approximation is computed. This information is used to make
an educated update of the Lagrange parameters Lλµ of the linear constraints. A detailed and
pedagogical presentation of the algorithm and its applications for fission barriers calculations
can be found in [49].

The implementation of the method in hfodd follows very closely the Appendix A of [49],
and we refer to this work for further information. Let us note that this method requires the
matrix of the constraint operator in the q.p. basis, which involves 8 matrix multiplications per
iteration (4 for neutrons, 4 for protons). The computation of the constraints correlation matrix
also requires N2

c additional matrix multiplications per iteration, where Nc is the number of
constraints. When simplex symmetry is conserved, the properties of the basis in hfodd reduce
the size of the matrices involved in all these operations to one half of the total basis size at
most. The computation overhead can still be noticeable, but is always largely compensated by a
drastic reduction in the number of iterations necessary to reach convergence and the near-perfect
precision of the obtained solution. All major linear algebra operations (matrix multiplication
and inversion) are carried out by BLAS and LAPACK routines.

2.2.4 Interface with hfbtho

The code hfbtho solves the Skyrme HFB equations in the HO basis by assuming axial and
reflection symmetry [50]. These built-in symmetries make the HFB matrix block-diagonal, and
the typical run time of the program is at least an order of magnitude shorter than for hfodd.
This makes hfbtho an ideal tool for large-scale calculations in cases where axial- and reflection
symmetries are sensible assumptions [51]. Conversely, hfbtho is not appropriate for specific
problems such as the description of nuclear fission, where the complexity of the nuclear shapes
impose the use of a fully symmetry-unrestricted solver like hfodd.

Both codes have been carefully benchmarked against one another in even-even [52] and odd
nuclei [53] at the equal-filling approximation. The difference of total energies in a nucleus like
120Sn is typically of the order of 10 eV, and can entirely be attributed to the different techniques
of computing the Coulomb potential. Such a nearly perfect match makes it possible to accelerate
hfodd run time by coupling the two codes together: for a given nucleus, the calculation is first
carried out by hfbtho (assuming axial and reflection symmetry), then restarted with hfodd

after a simple unitary transformation. If the physical solution is axial and parity invariant,
the hfbtho solution is the correct one, and hfodd can stop after the basis transformation.
If the solution breaks any of these symmetries, the self-consistent procedure will continue until

15

convergence. The motivation for such an interface is the observation that, for nearly all nuclear
shapes, the driving deformation is the axial quadrupole moment Q20.

Let us denote by {|SIMn〉} ≡ {|nx, ny, nz; s = ±i〉} the simplex-conserving Cartesian Har-
monic Oscillator basis used in hfodd. We denote by {|CYLn〉} the cylindrical harmonic oscil-
lator basis used in hfbtho, |CYLn〉 ≡ |N, nρ, nz, Λ, Ω〉. The basis transformation {|CYLn〉} →
{|SIMn〉} proceeds in two steps:

1. The coordinate transformation {|CYLn〉}→{|CARn〉} is carried out, where the {|CARn〉}
≡ |nx, ny, nz; σ〉 are the Cartesian harmonic oscillator states and σ = ±1/2 is the z-
projection of the intrinsic spin;

2. A unitary phase transformation is then performed to go to the good y-simplex basis:
{|CARn〉} → {|SIMn〉}.

Coordinate transformation - The spatial quantum numbers in Cartesian and cylindrical
coordinates are related through:

N = nx + ny + nz = 2nρ + Λ + nz. (46)

Let us note n⊥ = N − nz. In principle:

0 ≤ nρ ≤ n⊥, and − n⊥ ≤ Λ ≤ +n⊥. (47)

However, quantum numbers Λ < 0 (therefore nρ > n⊥/2) correspond to states which are the
time-reversed partners of the states Λ > 0: In hfbtho, time-reversal symmetry is conserved,
all basis states with Λ < 0 are disregarded, and the HFB matrix H is explicitly block-diagonal
by Ω = Λ ± σ values. The full HFB matrix is therefore reconstructed from each Ω-block. By
a suitable reordering of indexes, it is then split into 4 matrices H(σσ′). The H(σσ′) are purely
spatial matrices with matrix elements of the type:

〈n′
ρΛ′n′

z|Ĥ(σσ′)|nρΛnz〉. (48)

The transformation of the matrix elements (48) from cylindrical to Cartesian coordinates
requires the overlaps: 〈nxnynz|nρΛnz〉. We use the formulas given in [54]. Let us recall:

〈nxnynz|nρΛnz〉 = δ2nρ+Λ,nx+ny
(−i)ny(−1)Λ

[

nx!ny!nz!(nρ + Λ)!

22nρ+Λ

]1/2

×
pmax
∑

p=pmin

(−1)p

p!(nx − p)!(p + nρ − nx)!(nρ + Λ − p)!
, (49)

with:

pmin =

{

0 for nρ ≥ nx,
nx − nρ for nρ ≤ nx,

(50)

and:

pmax =

{

nx for nx ≤ nρ + Λ,
nρ + Λ for nx ≥ nρ + Λ.

(51)

16

-0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6
Basis deformation �

10-7

10-6

10-5

10-4

10-3

10-2

P
re

ci
si

o
n
 (

M
e
V

)

Nshell=8

Nshell=10

Nshell=12

Nshell=14

Figure 5: Stability of the hfodd solution after restart from hfbtho at the spherical point in
152Dy, as function of the deformation β2 of the HO basis.

The overlaps for Λ < 0 are obtained from those with Λ > 0 according to:

〈nxnynz|nρΛ(<0)nz〉 = (−1)|Λ|〈nxnynz|nρΛ(>0)nz〉∗. (52)

Phase transformation - After the matrices H(σσ′) are obtained in Cartesian coordinates,
the phase transformation, Eqs. (78a)-(78b) of Ref. [1], is performed. Let us recall that it reads:

|nxnynz, s = +i〉 =
1√
2

(

iny |nxnynz, σ =
1

2
〉 − i−ny+1|nxnynz, σ = −1

2
〉
)

,

|nxnynz, s = −i〉 =
1√
2

(

−iny+1|nxnynz, σ =
1

2
〉 + i−ny |nxnynz, σ = −1

2
〉
)

,

(53)

where s = ±i is the y-simplex. In hfbtho, simplex and time-reversal symmetries are always
conserved (by construction), so that the HFB matrix is block diagonal: H(ss′) = δss′H(s) and
H(−s) = H(s)∗. The blocks H(s=±i) are obtained by linear combinations of the H(σσ′) and the
phase factors recalled in Eq.(53).

For axially- and parity-symmetric HFB solutions, the interface between hfbtho and hfodd

gives a precision at restart that ranges from 1 eV to 1 keV depending on the nucleus, the
characteristics of the basis and the quadrupole deformation of the solution. Almost all the
error is contained in the direct Coulomb energy which is computed differently in the two codes.
Figure 5 shows the stability of the hfodd iterations immediately after restart from the hfbtho

solution at the spherical point in 152Dy, for different deformations of the basis and different basis
sizes.

17

2.2.5 Mixing of Matrix Elements of the HFB Matrix

When solved by successive diagonalizations, as in hfodd, the Hartree-Fock equations are self-
consistent. In practice, the iterative scheme is started with a set of initial conditions, formally
some vector V

(0), that linearize the problem. Upon entering iteration m with a vector V
(m)

in ,

solving the HF equations yields a new vector V
(m)

out . This vector is then used as input to the

next iteration m + 1, V
(m+1)

in → V
(m)

out . The iterations stop when |V (m+1)
out − V

(m)
out | ≤ ε, with ε a

measure of the convergence. In practice, the input vector at iteration m + 1 must be a mixing
of V

(m)
in and V

(m)
out for the iterations to converge. This mixing can be a simple linear mixing of

the type:
V

(m+1)
in = αV

(m)
out + (1 − α)V

(m)
in (54)

or more elaborate such as produced by the Broyden method [55].
Both the linear and Broyden mixing are implemented in hfodd. By default, the iterated

quantities V are the values of the HF fields on the Gauss-Hermite integration mesh [6]. However,
it was noticed that when the Lipkin-Nogami (LN) prescription is used, the matrix elements of
the density matrix in the HO basis must also be added in order to ensure convergence. In the
simplest case where time-reversal and simplex symmetries are conserved, and the LN procedure
is applied to both protons and neutrons, the size of the Broyden vector is augmented by 4M2,
where M is the size of the s.p. basis. For large bases, the size of the Broyden vector can thus
become prohibitive. To by-pass this memory bottleneck, the mixing of the matrix elements of
the HFB matrix has been implemented.

In hfodd, the self-consistent loop is organized in such a way that at each iteration m, it
is initialized with the set of HF fields (for neutrons and protons) V

(m)
in , and ends with the

determination of the new fields V
(m)

out : it therefore lends itself naturally to mixing the HF fields.
By contrast, the mixing of the matrix elements of the HFB matrix is most easily performed when
the self-consistent loop starts with an initial HFB matrix H

(m)
in and ends with the computation

of the new HFB matrix H
(m)
out (this is the case, e.g., in hfbtho). In order to conserve the

’HF potential-oriented’ structure of the self-consistent loop of hfodd, the mixing of the matrix
elements of the HFB matrix must be done immediately after a new H

(m)
out has been calculated:

in hfodd such a condition actually requires independent mixing for protons and neutrons with
two separate calls to the mixing routine and, in the case of the Broyden mixing, two different
memory arrays.

The size of the Broyden vector (for one isospin only) depends on the symmetries of the
problem: simplex conserved ISIMPY=1 or broken ISIMPY=0, time-reversal symmetry conserved
IROTAT=0 or broken IROTAT=1, HFB calculations IPAHFB=1 or HF calculations IPAHFB=0. Taking
also into account the symmetries of the matrix of the mean field and pairing field, the size of
the Broyden vector is:

N = (1+IROTAT) × M2 + (1-ISIMPY) × M2

+ IPAHFB [M(M + 1)/2 + IROTAT× M(M − 1)/2] (55)

For a typical static HFB calculation with conserved time-reversal and simplex symmetry, a
stretched basis such that NXHERM=NYHERM=30, NXHERM=60 and M = 1000, and 7 iterations
conserved in memory, the Broyden method requires 302 MB of RAM when fields are mixed, and
about 168 MB when matrix elements are mixed.

18

0 50 100 150 200
Iteration Number

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

101

102

103

P
re

ci
si

o
n
 (

M
e
V

)
Matrix �=0.55

Matrix �=0.60

Matrix �=0.65

Noise �=0.50

Noise �=0.55

Noise �=0.60

Fields �=0.50

Fields �=0.55

Fields �=0.55

Figure 6: Convergence of the Cranking HF iterations in 151Tb with the Broyden method. Curves
labeled ’Matrix’ correspond to the original mixing of matrix elements; curves marked ’Noise’ to
the mixing of matrix elements when the Broyden memory is erased every 4 iterations; curves
marked ’Fields’ correspond to the mixing of HF fields on the Gauss-Hermite mesh.

It has been observed that the mixing of the matrix elements of the HFB matrix in hfodd

is less stable than in a comparable implementation in hfbtho. This numerical noise may be
due to the fact that hfodd breaks a number of symmetries that are conserved in hfbtho,
and which manifest themselves by numerically small, non-zero elements in the matrix. Correct
performance for ground-state calculations can still be obtained if the memory of the Broyden
method is erased every n iterations, with n < nmem where nmem is the number of iterations
retained to compute the full Broyden correction (noise cancellation). In practice nmem = 4 gives
decent results.

2.3 Parallel Programming Model

Starting in version (v2.49s), the code hfodd has built-in parallel capabilities. These capabilities
are controlled by 3 different pre-processor options and are discussed below.

2.3.1 Distributed Memory Parallelism

Density functional theory is an efficient method to compute the properties of multi-fermionic
systems. From a programming point of view, recasting all degrees of freedom of the problem
into a single function of r, the local one-body density matrix, allows the formulation of a

19

compact, CPU- and memory-thrifty, implementation. In practice, the average computation
time of standard nuclear EDF solvers ranges from a few seconds for a spherical closed-shell
nucleus up to a few hours for a full symmetry-breaking configuration in a heavy nucleus.

Such naive estimates, however, are deceptive: in many instances, the nature of the problem at
hand requires the computation of many such configurations, as for example in the determination
of Potential Energy Surfaces (PES), which are critical ingredients in the proper description of
the nuclear fission process. While the time of calculation of any point of the N-dimensional PES
may be of the order of a few hours, systematic and accurate mapping of the surface is required
to compute reliable estimates of barrier heights, tunneling probabilities or collective inertia. For
N = 5 degrees of freedom with ni = 10 sample points each, the size of the mesh is 100,000: such
a problem requires both supercomputers and an adapted programming model.

One giant simplification of high-performance computing applications with EDF methods is
that the theory generates by construction a naturally parallel computational problem: most
of the time, all configurations can be handled independently by a single core (CPU unit) of a
multi-core processor. The amount of inter-processor communication is therefore often rather
low (coarse granularity). Such a property has made it possible to compute the entire mass table
in less than a day [51].

The distributed memory programming model of hfodd contains two layers of parallelism
managed by the standard Message Passing Interface (MPI) library. The outermost layer cor-
responds to Nmaster master groups of cores, each group being in charge of computing a given
nuclear configuration. The innermost or group layer is made of the Nproc cores in any given
group. The division of the processor grid in these two layers is carried out at the very beginning
of the code using standard MPI group and communicator routines. Most applications of hfodd

do not require the group structure, that is, Nproc = 1 is sufficient most of the time. Examples
of distributed HFB calculations are discussed in Sec. 2.3.4.

From a user’s point of view, running hfodd on several cores requires the following:

• The code must be compiled by setting the pre-processor option USE MPI=1. The user is
in charge of ensuring that an implementation of MPI exists on his/her system.

• Input data now falls into 2 categories: process-dependent and process-independent data,
the word ’process’ referring to a given HFB calculation. Process-independent data is
everything that will be the same on every process. Contrariwise, process-dependent data
is what changes from one process to the next: it is therefore what distinguishes the nuclear
configurations (Z, N , constraints, etc.). For practical reasons, see Section 2.3.2, process-
independent data will always be contained in the file hfodd.d, and the process-dependent
data always in the file hfodd mpiio.d.

2.3.2 Scalable Input Routines

In its single core version, hfodd reads its input data from the system standard input. In
practice, data is often contained in a simple ASCII text file, and the execution of the code uses
input redirection. Input is read by the routine NAMELI, which loops over the file for specific
keywords, each keyword being immediately followed by the relevant data. Such a structure
provides good flexibility, since the user can add or remove keywords at will from the input file.

20

In parallel mode, duplicating this structure of the I/O operations on all available cores is
not efficient, and can in fact affect the stability of the entire system. Indeed, not only would all
cores try to access the disks more or less at the same time, but they would all access the same
file and seek different positions in it. It is a well-known rule of thumb that parallel I/O has to
be handled either by one core only, or using dedicated libraries. In the specific case of hfodd,
the amount of input data is rather small, common to and needed by all cores, and read only at
the beginning of the calculation. The most natural solution is therefore to assign one core to
the task of reading it and broadcasting it to the others.

However, the flexibility induced by the keyword structure of the input file now becomes a
disadvantage, since the amount of data to be read (and then broadcast) is in fact known only at
run time. This feature suggests the use of Fortran 90 linked lists for each basic type of input data
(integer, double precision real number and character string). The entire I/O operation is then
broken down in 3 phases: (i) construction of the linked list (ii) broadcast and (iii) reconstruction
of local data. In the first phase, the routine mpi getSequentialData() parses the file hfodd.d,
which has exactly the same structure as the standard hfodd input file, and for each data,
adds a node to the relevant linked list. At the end of the process, linked lists are copied to local
allocatable arrays which are then broadcast to all cores using the MPI routine MPI Bcast (second
phase). All cores then acquire a local (to a given core) copy of 3 arrays, for the 3 basic types of
data mentioned above. Finally, every element of these arrays is re-associated with the relevant
local hfodd variables (third phase). This is done by the routine mpi setSequentialData.

101 102 103 104 105

Number of cores

200

250

300

350

400

450

500

T
im

e
 (

s)

Average
Minimum
Maximum

Figure 7: Average, minimum and maximum
CPU time for 6 HFB iterations in 152Dy as a
function of the number of cores for a full spher-
ical HO basis of Nshell = 14 shells. The pairing
cut-off energy is Ecut = 60 MeV. Calculations
were done on the Cray XT5 at NCCS, the code
was compiled with the PGI v.10.3 compiler
with -fast -Mipa=fast options. The Cray
libsci library was used for BLAS and LA-
PACK. All cores do the same HFB calculation.

101 102 103 104 105

Number of cores

0

10

20

30

Lo
a
d
 I
m

b
a
la

n
ce

 (
%

)

Figure 8: Load imbalance for the same runs as
in Fig. 7. Load imbalance is defined here as
(Tmax − Tmin)/Tavr, where Tmin (resp. Tmax) is
the minimum (resp. maximum) time of execu-
tion over all cores, and Tavr the average time
over all cores.

In principle, it would have been enough to implement this scheme for the standard hfodd

21

input file, and add a few keywords relevant for process-dependent data. However, it proved more
convenient to put all process-dependent data in a file of its own, with a similar keyword structure.
The I/O process described above has therefore to be repeated for the process-dependent data.
This is carried out by the routines mpi getParallelData() and mpi setParallelData.

This implementation of the I/O procedure combines a number of advantages. First and
paramount, it scales well with the number of cores available, since only one core is dedicated to
accessing the disk and reading the data. Since the amount of data will always be very small (a
few kB at most), the broadcast phase should not induce a very large communication overhead.
In addition, the linked list structure conserves the flexibility to add/remove data from the input
files, which also ensures backward and forward compatibility with all future releases of the code.

Figure 7 shows the scaling properties of hfodd. The sample calculation consisted of 6 HFB
iterations in 152Dy in a full spherical basis of N = 14 shells with constraints on Q20 = 20 b
and Q22 = 0 b. All cores computed the same configuration. The PGI compiler v10.3 with the
-fast -Mipa=fast options was used to compile the code, the Cray library libsci to link to
BLAS and LAPACK, and all calculations were done on the Jaguar Cray XT5 at the NCCS.
These technical characteristics are given because the actual time of execution can vary very
significantly depending on the compiler/platform and compiler options used.

Since all cores perform exactly the same calculation, any departure from a flat straight line
should be attributed at first order to (i) the inter-core communication during the initial input
setup (ii) filesystem operations to create/access files. While the input setup has been somewhat
optimized, see above, all other I/O operations are the same as in serial mode: for the runs shown
in Figs. (7-8), every core generates 2 files that remain opened with read/write permissions for
the entire time of execution. To better grasp the impact of the lack of I/O optimization, figure
8 shows the load-imbalance of this calculation, defined here as:

LI =
Tmax − Tmin

Tavr

(56)

where Tmin (resp. Tmax) is the minimum (resp. maximum) time of execution over all cores, and
Tavr the average time over all cores. Perfect load-balancing (equal distribution of work between
cores) implies LI=0.

2.3.3 Shared Memory Parallelism

Many leadership class computers have adopted a hybrid distributed-shared memory architecture,
whereby all cores are grouped into processors, each processor having access to its own physical
memory. Tests of the current version of hfodd have been carried out on the Franklin Cray XT4
and Jaguar Cray XT5, which are characterized by, respectively, 4-core processors with 8 GB
shared memory and 12-core processors with 24 GB shared memory. As mentioned earlier, most
applications of hfodd can run on a single core, so that in the case of the Jaguar supercomputer,
12 simultaneous calculations can be run on a processor. However, for large basis size, the memory
needed by one instance of hfodd can exceed the 2 GB/core available.

This seemingly limitation of the prevailing architectures can be exploited to accelerate the
execution of the code by using the standard OpenMP API. If the number of instances of the code
running on a given processor is less than the actual number of cores in that processor, several
cores are in fact inactive. The OpenMP API offers a very simple interface to recycle these cores

22

1 2 3 4 5 6 7 8 9

1.0

1.1

1.2

1.3

1.4

1.5
Speedup T

1
/ T

N

Amdahl’s law

S
p
e
e

d
u

p
 f

a
c
to

r
S

N

OpenMP-threads or processors N

Model
Amdahlslaw (User)

Equation S=1/(1-P + P/N)

Reduced
Chi-Sqr

4.41843E-4

Adj. R-Square 0.98416

Value Standard Error

T/Tn P 0.36994 0.00513

Amdahl’s law:

S
N
=1/(1-P + P/N)

P= 0.37 (parallel portion)

Figure 9: Multi-threading accelerations in
HFB calculations of 180Hg for a deformed
Nshell = 26 HO basis with 1140 states and
deformation α20 = −0.32. Calculations were
performed on a Intel Xeon processor with
the Intel Fortran Compiler and the -xSSE4.2

-O3 -override-limits options with stan-
dard BLAS libraries, and are compared to
Amdahl’s law.

0 2 4 6 8 10 12
Number of threads

0

2

4

6

8

10

12

O
p
e
n
M

P
 a

cc
e
le

ra
ti

o
n

Figure 10: Same as Fig. 9 for 6 HFB iterations
in 152Dy in a full spherical basis of N = 14
shells (same characteristics as in Fig. 7) and
threaded BLAS libraries. Black circles: speed-
up of the entire code; triangles: speed-up for
the 3 impacted routines (error bars reflect the
rounding of the time to the nearest second).
Dashed line: perfect scaling for the OpenMP
acceleration.

for quasi-automatic parallelization of the code (multi-threading). The execution then consists
of series of sequential instructions (on one core) combined with multi-core parallel sequences.
This mechanism is particularly effective to (quasi-)automatically parallelize loops. Let us recall
that OpenMP instructions, or pragmas, are coded in the form of comments only activated by
the relevant option of the compiler: modifications of the source code remain minimal.

We identified 3 subroutines of hfodd that could take a significant chunk of the total run
time: subroutine denmac computes the density matrix from the HFB eigenvectors; subroutine
spaver computes s.p. expectation values of operators; subroutine nilabs defines the Nilsson
labels of s.p. states. All these routines involve 3-nested loops with Nstates elements, where
Nstates is the number of basis states. For large bases with Nstates ≈ 1000 − 2000, these loops
become time-consuming, and they cannot be re-arranged easily in a way that memory access is
optimized.

Figure 9 shows the OpenMP acceleration of a full HFB calculation in 180Hg with a large basis
of 26 HO shells and 1140 states (basis deformation α20 = −0.32) as function of the number of
threads. Calculations were performed on a cluster of Intel Xeon processors with the Intel Fortran
Compiler and the -xSSE4.2 -O3 -override-limits options. Standard (un-threaded) BLAS
and LAPACK libraries were used. The 3 routines impacted by Open MP pragmas represent a
small fraction P = 0.37 of the total execution time in this case, and the observed acceleration
nicely aligns with predictions by the empirical Amdahl’s model.

Leadership class computers often provide threaded BLAS libraries. In Fig. 10, we shows
the acceleration induced by OpenMP in the same test case as in Sec. 2.3.2. This profiling

23

experiment was done on the Jaguar Cray XT5 computer at the NCCS by linking to threaded
BLAS libraries. At the level of the 3 modified routines, the scaling is perfect with the number
of threads; overall acceleration is a little better than in the case of Fig. 9 due to the benefit of
using threaded libraries. OpenMP acceleration is activated by setting USE OPENMP to 1 in the
Makefile.

2.3.4 Parallelization of Diagonalization Routines

One strength of the hfodd code is its ability to perform computations without assuming sym-
metries. Calculations without symmetries, however, prove computationally expensive. Until
now hfodd has been successfully used in several massively parallel applications, such as the
survey of one quasi-particle states in odd mass nuclei [53] and potential energy surfaces for fis-
sion [56]. The trend in massively parallel computing, however, is to reduce the memory available
to each computing core, thereby indirectly imposing restrictions on the symmetries assumed in
current-generation hfodd calculations. In Fig. 11, the peak memory used in a hfodd run is
plotted against the number of full shells in the harmonic oscillator basis. It is worth noting that
the present NCCS Cray XT4 and Cray XT5 machines have 2GB available to a core, which is
exceeded by a problem using 20 full oscillator shells. For problems like fission that require the
calculation of highly deformed nuclei, at least 26 − 31 oscillator shells can be needed.

12 14 16 18 20 22
Number of shells

 0.0

 0.5

 1.0

 1.5

 2.0

 2.5

 3.0

M
e
m

o
ry

 (
G

B
)

Figure 11: The memory high-water mark at-
tained by hfodd is plotted against the num-
ber of major harmonic oscillator shells used in
the basis.

ZHPEV

ZHPEVX

ZHEEVD

ZHEEVR

PZHEEV

PZHEEVD

PZHEEVD

PZHEEVD
0

1000

2000

3000

T
im

e
 (

s)

2x2
2x2
4x4
8x8

Figure 12: Total execution time of hfodd

spent for different diagonalization routines
and numbers of rows used in a square ScaLA-
PACK process grid. For single-core tests,
HFBISZ was modified so that all eigenstates
of the HFB matrix are computed, to allow
meaningful comparisons with multi-core algo-
rithms.

To fully take advantage of the next generation of massively parallel platforms as well as
its full symmetry-breaking capabilities, hfodd should therefore be scaled so that its solution
of the HFB equations is distributed among an arbitrary number of cores. Before undertaking
such a daunting task, though, the anticipated benefits must be assessed and demonstrated. In

24

this release of the code, we have tested whether we can achieve any gain in the speed of the
diagonalization routines by using the ScaLAPACK library.

Tests were conducted for the all symmetry-breaking HFB case (subroutine HFBSIZ), which
involves the largest matrices, of size 4N × 4N if N is the number of states in the HO basis.
Fig. 12 shows the time of execution of 3 HFB iterations in 152Dy in a full spherical HO basis
of Nshell = 14 shells (N = 680 states). The code was compiled with the -fast -Mipa=fast

option and run on the Cray XT5 computer at the NCCS. OpenMP acceleration was activated,
and the BLAS and LAPACK routines were provided by the libsci library. Fig. 12 shows the
benchmark results for different diagonalization methods and different ScaLAPACK core grids.
Let us note that the ScaLAPACK library does not include a parallelized version of all LAPACK
diagonalization routines. From the strict perspective of execution time, the single-core version of
hfodd invoking the ZHEEVR LAPACK routine (based on a very fast diagonalization algorithm)
may turn out to be faster than the multi-core version, which can only resort to PZHEEV or
PZHEEVD ScaLAPACK methods.

The module hfodd sl provides an interface to the parallel matrix diagonalization routines
available in ScaLAPACK. The user may enable the use of the hfodd sl module by setting the
environment variable USE SCALAPACK to 1 in the project Makefile (similarly, USE SCALAPACK is
set to 0 to disable the module). The hfodd sl module requires that the program is linked to a
ScaLAPACK library and compiled with MPI, as well. The user should also specify the size of
the process grid in the project Makefile through the environment variables M GRID (number of
process rows) and N GRID (number of process columns). The program will stop with an error,
if the product M GRID × N GRID times the number of different HFB configurations exceeds the
number of processes allocated for the program.

2.4 Corrected errors

In the present version (v2.49s), we have corrected the following little significant errors of the
previous published version (v2.40h) [6].

2.4.1 Coulomb energies

For the combination of the Coulomb parameters ICOUDI=1 and ICOUEX=2 (ICOUDI=2 and
ICOUEX=1), the direct (exchange) Coulomb energy was inadvertently set to zero.

2.4.2 Skyrme parameters

For SLY5 and SLY7, the predefined values of the Skyrme-force parameters corresponded to those
given in Ref. [57], while for SLY4 they corresponded to unrounded numbers communicated by
the authors of the force. At present, all these parameters are coded according to Ref. [58], while
the previous values are kept in the code under acronyms sLy4, sLy5, and sLy7.

2.4.3 Quasiparticle blocking

The time reversal of s.p. states was incorrectly coded for IDSIGB = −1 (in blosig), IDSIMB = −1
(in blosim) IDSIQB = −1 (in blosiq), IDSIZB = −1 (in blosiz). Moreover, the quasiparticle
blocking was incorrectly performed in blosiz and, in some situations, these errors compensated

25

one another. One should stress that the calculated results were always correctly converged, but
they could have corresponded to other blocked quasiparticles as compared to what was requested
in the input data.

2.4.4 Yukawa mean fields

For calculations related to the Yukawa interaction that were not supposed to be using the
mean fields stored on the disc (IFCONT = 0), in the first iteration the Yukawa mean fields were
inadvertently set to zero. Since later these mean fields were calculated correctly, the error was
only affecting the continuation of calculations from the disc, while the converged results were
correct.

2.4.5 The Broyden method

In the subroutine dobroy, the input parameter ALPHAM was inadvertently reset to 1−SLOWEV

and thus it was ineffective.

3 Input Data File

3.1 Physics

Keyword: PROJECTISO
0, 2, 1, 1.E-6, 0, 0 = IPRGCM, ISOSAD, NBTKNO, EPSISO, ICSKIP, IFERME

For IPRGCM≥ 1 and NBTKNO≥ 1, the isospin projection is carried out. The isospin projection
is performed for all values of isospin T such that Tmin ≤ T ≤ Tmin + ∆T . In the current
implementation, Tmin = (N − Z)/2, and ∆T := ISOSAD/2. The number of Gauss-Legendre
points required to perform integrations over the Euler angle βT is given by NBTKNO. By setting
ICSKIP=1, in the projection routines the Coulomb interaction can be switched off, that is, in
Eq. (7) V̂ C can be neglected. Parameter EPSISO gives εT and controls the number of good-
isospin states. Parameter IFERME controls the calculation of the Fermi matrix element (13),
which proceeds in two independent runs. In the first run, for IFERME=−1, the wave-function
|I = 0, T ≈ 1, Tz = ±1〉 is computed and stored in the external file under the name specified in
the keyword WAVEF-FILE. Next, for IFERME=+1, the matrix element (13) is computed. This run
uses information on the |I = 0, T ≈ 1, Tz = ±1〉 state calculated in the first step and supplied
in the file specified again in the keyword WAVEF-FILE.

Current restrictions: In version (v2.49s), the isospin projection is only available at the
Hartree-Fock level, that is, it requires IPAIRI=0. When the full Hamiltonian is re-diagonalized
(ICSKIP=0), the Coulomb potential must be computed exactly, that is, by expanding both the
direct and exchange terms onto a sum of Gaussians, see Sec. 2.10 of Ref. [7]. This requires
setting ICOUDI=2 and ICOUEX=2 in the input. The method also imposes setting IROTAT to 1.
Note also that IPRGCM≥ 1 activates either the isospin-, or angular-momentum projection, or
both (see keyword PROJECTGCM described in [7]). To run the isospin- or angular-momentum
projection alone, one needs to set the numbers of integration points NUAKNO=1 and NUBKNO=1
or NBTKNO=1, respectively.

26

Keyword: COULOCHARG
1.0 = E EFFE

E EFFE is the factor that multiplies the value of the elementary charge used in the Coulomb mean-
field. In this way the strength of the Coulomb interaction can be modified or, for E EFFE=0, the
Coulomb interaction can be switched off. Note that this factor does not change the strength of
the Coulomb interaction rediagonalized within the isospin-projection method, see Sec. 2.1.1.

Keyword: FINITETEMP
0.0 = TEMP T

This keyword controls the value of the nuclear temperature (in MeV). If TEMP T>0, The finite-
temperature HFB or HF+BCS calculations are performed.

Keyword: SHELLCORCT
0 = IFSHEL

For IFSHEL=1, the traditional shell correction δR
(1)
shell is computed at convergence from the HF

s.p. energies. If IFSHEL=2, the shell correction δR
(2)
shell is computed, which includes the removal

of spurious contributions from positive energy states. For IFSHEL=0, shell correction is not
computed.

Keyword: SHELLPARAM
1.2, 1.2, 4.5, 6 = GSTRUN, GSTRUP, HOMFAC, NPOLYN

This item adjusts the parameters of the shell correction. The variable GSTRUN (GSTRUP) stands for
the γn (γp) smoothing parameter for the neutrons (protons). HOMFAC is the multiplicative factor
α that defines the energy window for the shell correction, according to αh̄ω, with h̄ω = 41/A1/3.
NPOLYN is the number p of Hermite polynomials used in the expansion of the smooth density.
Preset values are a good choice to use for IFSHEL=1. For IFSHEL=2, the recommended values
are γn = 1.54, γp = 1.66, α = 4.5 and p = 10.

Keyword: RENORMASS
0, 0.0, 0.0, 0.0 = IRENMA, DISTAX, DISTAY, DISTAZ

For IRENMA ≥ 1 the renormalized translational mass is determined in each iteration by using
components of the shift vector R, DISTAX, DISTAY, and DISTAZ (in fm), in the x, y, and z
direction, respectively, multiplied by IRENMA, see Eqs. (38) and (40). For IRENMA=0, the mass
is not renormalized.

Keyword: GAUOVERAPP
1 = IDOGOA

For IDOGOA=0 or 1, the translational mass is determined by using the Lipkin method (38) or the
GOA expression (40), respectively. However, even for IDOGOA=0 the GOA mass is calculated
and printed for reference. For IRENMA=0, the value of IDOGOA is ignored.

Keyword: UNEDF PROJ

0 = IF EDF

Setting IF EDF=1 activates specific parameterizations of the Skyrme energy functional for which
volume coupling constants are determined automatically from nuclear matter properties (used
as inputs) and surface coupling constants are preset as usual, following the strategy laid out in
[59].

27

3.2 Numerical Methods

Keyword: TWOBASIS
0 = ITWOBA

For ITWOBA=1, the two-basis method is used to diagonalize the HFB Hamiltonian. ITWOBA=1
requires IPAHFB=1. The two-basis method is currently implemented only for the no-symmetry
case; therefore, ITWOBA=1 requires ISIMPY=0 and IPARTY=0.

Keyword: CUT SPECTR

0 = LIMQUA

For LIMQUA=1, the HFB quasiparticle energies are calculated only up to the cut-off energy of
ECUTOF, see Sec. 3.1 in [4]. LIMQUA=1 requires IPAHFB=1.

Keyword: MULTLAGRAN
0, 0, 0.0, 0 = LAMBDA, MIU, QLINEA, IFLALQ

For IFLALQ=1, the linear multipole constraint is used in conjunction with the quadratic multipole
constraint (see keyword MULTCONSTR) to implement the ALM for the total multipole moment
constraint of multipolarity λ and µ. The value of QLINEA is the initial value for the Lagrange
parameter L

(0)
λµ . Updates of the parameter in the ALM method are defined by Eq. (45). The

calculated values of the Lagrange parameters are stored on the record file; this allows for a
smooth continuation of the ALM method when restarting calculations from disk, see keyword
CONTAUGMEN.

For IFLALQ=−1, only the linear multipole constraint is used for the multipolarity λ and µ.
This option is used together with IF RPA=1. For IFLALQ=0, linear constraints are switched off.

Keyword: SURFLAGRAN
0, 0, 0.0, 0 = LAMBDA, MIU, SLINEA, IFLALS

This keyword is the exact analog of MULTLAGRAN for surface and Schiff moments, see keywords
SURFCONSTR or SCHICONSTR) in Sec. 2.4 of [4]. Additional values for the flag IFLALS are pos-
sible: for IFLALS=2 or 3, the ALM is applied only for the neutron or proton (surface-moment
or Schiff-moment), respectively. The values of IFLALS must be the same for all constrained
multipolarities.

Keyword: CONTAUGMEN
0 = IACONT

For IACONT=1, the Lagrange parameters Lλµ for the linear constraints will be initialized with
the values read from the record file.

Keyword: RPA CONSTR

0 = IF RPA

For IF RPA=1, the Lagrange parameters Lλµ of the linear constraints will be updated auto-
matically at each iteration based on the approximation of the RPA matrix. In hfodd version
(v2.49s), this option is only available for HFB calculations for conserved simplex (ISIMPY=1).
To be activated, it also requires the flags for linear constraints IFLALQ to be set (see keyword
MULTLAGRAN). While in the ALM, these flags are all set to 1, in the method based on the RPA
matrix they must be set to −1.

Keyword: HFBTHOISON
0, 0.0 = IF THO, CBETHO

28

For IF THO=1, the code will automatically attempt to perform the requested calculation, first
with the hfbtho solver, then by automatic restart with the standard hfodd engine. All options
specific to hfodd and not implemented in hfbtho will simply be disregarded in this first stage.
As an experimental feature, it is also possible to restart constrained calculations, in which case
CBETHO is the value of the β2 deformation used to start hfbtho.

Keyword: BROYDENMAT
4, 0 = NOIINP, MIXMAT

For MIXMAT=1, the iterations of the self-consistent method proceed by mixing the matrix el-
ements of the HF(B) matrix instead of the HF fields. This option is compatible with both
IBROYD=1 and IBROYD=0. It has been noticed that the mixing of matrix elements is less stable
than the mixing of the fields, unless the Broyden memory is erased every n iterations. The value
of n is given by NOIINP, and it is recommended to take n less than the number of iterations kept
in the Broyden memory.

Keyword: PARA ALL

0, 1, 1, 1, 1 = IPAALL, NUBSTA, NUBSTO, NUTSTA, NUTSTO
For IPAALL=1, calculations of kernels for different values of the Euler angle β and the gauge an-
gle βT proceed in the same way as those for the α and γ Euler angles, see keyword PARAKERNEL

in Sec. 3.2 in [7]. This allows for performing the calculation of kernels in parallel (in differ-
ent runs of the single-core version of hfodd), and later using the calculated kernels for the
angular-momentum and isospin projection. Calculations are performed for the nodes in the
Euler angle β from NUBSTA to NUBSTO and for those in the gauge angle βT from NUTSTA to
NUTSTO. Values of NUBSTA and NUBSTO must be between 1 and NUBKNO and must be ordered as
NUBSTA≤NUBSTO. Values of NUTSTA and NUTSTO must be between 1 and NBTKNO and must be
ordered as NUTSTA≤NUTSTO. IPAALL=1 requires IPAKER=1.

Keyword: NUMBKERNEL
0 = KFIKER

For KFIKER>0, the automated procedure of naming the kernel files (see keyword SAVEKERNEL in
Sec. 3.2 in [7]) is suspended and the kernels are saved in the kernel file carrying the consecutive
number equal to KFIKER. This requires an explicit bookkeeping of the kernel-file names in the
input data, but has the advantage of preventing two parallel jobs from accessing the same
kernel file simultaneously. Only the values of KFIKER between 0 and 999 are allowed. KFIKER>0
requires IPAKER=1.

3.3 High-Performance Computing

3.3.1 List of active keywords in hfodd.d

In parallel mode, the code hfodd (v2.49s) reads all user-defined sequential data from the input
file named hfodd.d. Since this version is the first to embed parallel capabilities, many hfodd

options have not been implemented in parallel mode yet. Only a subset of hfodd keywords can
therefore be activated, the list of which is given below:

• Iterations - ITERATIONS, BROYDEN, SLOW DOWN, SLOW PAIR, SLOWLIPKIN, ITERAT EPS,
MAXANTIOSC, PING PONG, CHAOTIC,

29

• Specific features - FINITETEMP, SHELLCORCT, HFBTHOISON, SHELLPARAM, COULOMBPAR,
SKYRME-SET, SKYRME STD, UNEDF PROJ,

• Constraints - OMEGAY,

• Symmetries - SIMPLEXY, SIGNATUREY, PARITY, ROTATION, TSIMPLEX3D,

• Pairing - PAIRING, HFB, CUTOFF, BCS, HFBMEANFLD, LIPKIN, PAIR INTER, PAIRNINTER,
PAIRPINTER,

• HO Basis - OPTI GAUSS, GAUSHERMIT, BASIS SIZE, SURFAC DEF,

• Miscellaneous - ONE LINE, NILSSONLAB, REVIEW,

• Restart options - RESTART, CONT PAIRI, CONTLIPKIN, CONTFIELDS, EXECUTE.

In principle, these options provide enough flexibility to cover the majority of hfodd applica-
tions in parallel mode. The user interested in some specific option which could not be activated
by one of the keywords above can still manually modify the routine PREDEF prior to compilation.
This routine pre-defines all hfodd input data.

3.3.2 Structure of hfodd mpiio.d

Keyword: CALCULMODE
1, 0 = MPIDEF, MPIBAS

For MPIDEF=1, the code will perform a simple grid calculation of Np × Nn × Ndef points where
Np is the number of points along the Z−axis (proton number), Nn the number of points along
the N−axis (neutron number), and Ndef the total number of constraints on deformations, see
keyword MULTICONST below. Requires IFCONS=1. For MPIBAS=1, the calculation grid will be
given by Np×Nn×Ndef×NHO×Nβ×Nω, where NHO is the number of different oscillator shells in
the basis, Nβ the number of different deformations of the basis, and Nω the number of different
oscillator frequencies (in MeV), see also keyword BASIS-NSHL, BASIS-DEFS and BASIS-FREQ

below.

Keyword: CONSTR DEF

1 = IFCONS

For IFCONS=1, every calculation performed by the code will be constrained on the relevant
values of the multipole moments.

Keyword: CONSTR LIN

1 = IFLINE

For IFLINE=1, constrained calculations in multi-core mode are performed with the RPA method
of re-adjusting the linear constraints, see Sec. 2.2.3.

Keyword: ALL NUCLEI

66, 2, 1, 86, 2, 1 = IZSTRT, IZSTEP, NSTPEZ, INSTRT, INSTEP, NSTEPN
Define a vector of proton and neutron numbers

Z(i) = Z(0) + (i − 1)δZ, i = 1, . . . , Np, N(j) = N(0) + (j − 1)δN, j = 1, . . . , Nn. (57)

30

Then, Z(0):=IZSTRT, δZ:=IZSTEP, Np:=NSTEPZ, N(0):=INSTRT, δN :=INSTEP, Nn:=NSTEPN.
This defines a (rectangular) subset of nuclei in the isotopic chart for which (possibly Ndef > 1)
calculations will be performed.

Keyword: MULTICONST
2, 0, 10.0, 10.0, 4 = LAMBDA MIU, QBEGIN, QFIN, NUMBERQ

The deformation grid is defined as a set of Ndef = ΠλµNλµ deformation points where Nλµ is the

number of points for the constraint on the multipole moment Q̂λµ with multipolarity λ (LAMBDA)
and µ (MIU). The point number k for this constraint reads:

Q̄λµ(k) = Q̄λµ(0) +
k − 1

Nλµ − 1

[

Q̄λµ(Nλµ) − Q̄λµ(0)
]

, (58)

with Q̄λµ(0):=QBEGIN, Q̄λµ(Nλµ):=QFIN and Nλµ:=NUMBERQ. Multiple constraints are obtained
by adding several lines with different λ and µ. All such lines must begin with λ < 0 except the
last one.

Keyword: BASIS-NSHL
8, 2, 1 = N MINI, N STEP, NOFSHL

For MPIBAS=1, the number of shells in the basis NHO can take different values of the form:

Nshell(m) = Nshell(0) + (m − 1)δNshell, m = 1, . . . , NHO. (59)

Then, Nshell(0):=N MINI, δNshell:=N STEP, NHO:=NOFSHL. Note that the number of states is
set independently as a sequential data under keyword BASIS SIZE. While the familiar relation
Nstates = (Nshell + 1)(Nshell + 2)(Nshell + 3)/6 between the number of states and the number of
HO shells is valid for spherical bases, it does not apply in the deformed case.

Keyword: BASIS-DEFS
0.0, 0.1, 1 = B20MIN, B20STP, NOFB20

For MPIBAS=1, the axial quadrupole deformation β ≡ α20 can take different values of the form:

β(n) = β(0) + (n − 1)δβ, n = 1, . . . , Nβ. (60)

Then, β(0):=B20MIN, δβ:=B20STP, Nβ:=NOFB20

Keyword: BASIS-FREQ
8.0, 0.1, 1 = O MINI, O STEP, NOFFRE

For MPIBAS=1, the oscillator frequency h̄ω can take different values of the form:

h̄ω(l) = h̄ω(0) + (l − 1)δω, l = 1, . . . , Nω. (61)

Then, h̄ω(0):=O MINI, δω:=O STEP, Nω:=NOFFRE

4 Output Files

Four additional examples of output file, illustrating the new features of the code are provided
in files ca40 iso.out, cr48 lip.out, cr50 tem.out and pb208 tho.out. Selected lines from

31

ca40 iso.out are given in Appendix B below. Several minor sections of the output have been
added or reformatted. We describe below only the non-trivial important additions.

In ca40 iso.out, the section labeled ISOSPIN-MIXED EIGENSTATES lists all the eigenvectors
(within the ǫT cut-off described in Sec. 2.1.1) of the Hamiltonian re-diagonalized in the good-
isospin basis. The first two columns are the number n and value En,Tz

of the energy. The next
5 columns give the characteristics of the expansion of Eq.(12) (or Eq.(18) if isospin and angular
momentum are combined). The fourth and fifth columns give respectively the number m and
isospin T of the good-isospin basis state. The columns 6, 7 and 8 give, respectively, the norm
of the expansion coefficient a

(n)
mT , its real part and and its imaginary part.

In cr50 tem.out, the new value I LINE=3 has been used to display the iterations. Every
line is made of the iteration number ITER, the value of the total energy ENERGY, the value of
the stability criterion STABILITY, the total quadrupole moment Q 2 the γ angle GAMMA, the total
entropy S, the neutron Fermi level lam n, the proton Fermi level lam p, the neutron pairing
energy EpN and the proton pairing energy EpP. With the values of the Fermi levels, total entropy
and temperature, the grand canonical potential Ω of Eq.(19) can be deduced at each iteration.

In pb208 tho.out, a warning message is displayed at the beginning to indicate that the
calculation will proceed in two steps, first with hfbtho then with hfodd. The message also
gives the conditions under which the restart is expected to be smooth. Follows the output
generated by hfbtho, we refer to [50] for additional information. Since the UNEDF functional
is used in this test run, an additional section NUCLEAR MATTER PROPERTIES lists the volume
nuclear matter characteristics of the functional. Section THE SHELL CORRECTION... gives the
type of shell correction computed and the numerical characteristics of the smoothing procedure.
Section SHELL CORRECTION located just before the final energy table gives the value of the shell
correction for neutrons and protons.

5 Fortran Source Files

The Fortran source code is provided as a set of 8 module files:

• hf249s.f - Main source code

• hfodd functional.f90 - Definition of energy functionals based on nuclear matter prop-
erties and coupling constants instead of (t,x) parameters.

• hfodd shell.f - Shell correction

• hfodd hfbtho.f90 - hfbtho code (v.101a)

• hfodd interface.f90 - Interface between hfbtho and hfodd

• hfodd mpiio.f90 - Module handling I/O in parallel mode

• hfodd mpimanager.f90 - Module defining parallel jobs

• hfodd SLsiz.f90 - Scalapack module for routine HFBSIZ

together with one header file, hfodd sizes.h, which contains all Fortran PARAMETER statements
controlling the size of static arrays. The language of newly-developed modules is Fortran 90,
while legacy code is still written, in part or totally, in Fortran 77.

32

5.1 Standard Libraries

The code hfodd requires an implementation of the BLAS and LAPACK libraries to function
correctly, see Sec. 5.2 in [7] for details. While the interface to older NAGLIB routines remains
available, BLAS and LAPACK will give the best peak performance on most current computers
and are recommended.

5.2 Parallel Mode

We recall that a parallel machine is made of a certain number of sockets, each containing one
processor. Every processor contains a number of CPU units, or cores, sharing the same memory.

5.2.1 Basic MPI

To activate multi-core calculations, hfodd requires an implementation of the Message Passing
Interface (MPI). The current version was tested on two different implementations:

• MPICH-1 and MPICH-2, available at:

http://www.mcs.anl.gov/research/projects/mpich2/

• Open MPI available at: http://www.open-mpi.org/

In parallel mode, the code hfodd is compiled by setting USE MPI to 1 in the project Makefile.
Typically, the executable is run as follows (bash syntax):

mpiexec -np [number of processes] hf249s < /dev/null >& hf249s.out

where hf249s.out is a redirection for the standard output and files hfodd.d and hfodd mpiio.d

must be in the directory where this command is run.

5.2.2 Hybrid OpenMP/MPI Mode

Multi-threading is activated by switching the USE OPENMP to 1 in the project Makefile. This op-
tion can be used on its own, or in combination with USE MPI=1, in which case the programming
model is hybrid MPI/OpenMP. We recall that to activate multi-threading, the environment
variable OMP NUM THREADS must be set to the required number of threads prior to execution. If
every processor has 6 cores, then to run 12 MPI processes with 3 threads each, the following
command line (in the OPENMPI implementation) should be executed:

export OMP NUM THREADS = 3

mpiexec -np 12 -npersocket 2 hf249s < /dev/null >& hf249s.out

Therefore, instead of the 12 MPI processes being executed by all the 12 cores of 2 full processors,
the -npersocket 2 option imposes that only 2 cores within a given socket are actually used,
leaving the remaining 4 available when multi-threading kicks in. Such an instruction requires 6
processors instead of 2 in the pure MPI mode, and up to (12 processes)× (3 threads) = 36 cores
may be active at a given time .

33

5.2.3 Scalapack

Using Scalapack requires the most advanced partitioning of the core grid. The library can be
downloaded at:

http://www.netlib.org/scalapack/

It relies on the BLACS framework, which is available at

http://www.netlib.org/blacs

To compile the code with the Scalapack library, switch USE SCALAPACK to 1 in the project
Makefile. Note that Scalapack requires a multi-core grid and can therefore not be used in serial
mode: it requires to set USE MPI to 1 in the Makefile. Optimal performance can be obtained by
also allowing multi-threading. The syntax of the command line is unchanged compared to the
basic MPI or hybrid model. However, special care must be taken in the choice of the number
of cores: the total number of cores is now the product of the number of cores for each HFB
calculation (size of the Scalapack process grid) by the number of different HFB calculations
required (defined in hfodd mpiio.d).

6 Acknowledgments

We thank Micha l Opala for performing OpenMP tests and bringing our attention to Amdahl’s
law. Discussions with Hai Ah Nam on scaling properties on leadership class computers are also
warmly acknowledged. This work was supported in part by the Polish Ministry of Science and
Higher Education under Contract Nos. N N202 328234 and N N202 231137, by the Academy
of Finland and University of Jyväskylä within the FIDIPRO program, by the UNEDF SciDAC
Collaboration under the U.S. Department of Energy grants No. DE-FC02-07ER41457 and DE-
FG02-96ER40963 (University of Tennessee), and was partly performed under the auspices of
the US Department of Energy by the Lawrence Livermore National Laboratory under Contract
DE-AC52-07NA27344. Funding was also provided by the United States Department of Energy
Office of Science, Nuclear Physics Program pursuant to Contract DE-AC52-07NA27344 Clause
B-9999, Clause H-9999 and the American Recovery and Reinvestment Act, Pub. L. 111-5. Com-
putational resources were provided in part by a computational grant from the Interdisciplinary
Centre for Mathematical and Computational Modeling (ICM) of the Warsaw University, by the
Oak Ridge Leadership Computing Facility, located in the National Center for Computational
Sciences at Oak Ridge National Laboratory supported by the Office of Science of the U.S. De-
partment of Energy under Contract DE-AC05-00OR22725, as well as by the National Energy
Research Scientific Computing Center supported by the Office of Science of the U.S. Depart-
ment of Energy under Contract No. DE-AC02-05CH11231. We also acknowledge the CSC - IT
Center for Science Ltd, Finland for the allocation of computational resources.

34

A Test Run Input

!---!

! This file is part of the official HFODD v2.49s release and demonstrates !

! the use of isospin mixing and projection. !

!---!

---------- General data -----------

NUCLIDE IN_FIX IZ_FIX

20 20

ITERATIONS NOITER

100

ITERAT_EPS EPSITE

0.000000001

SLOW_DOWN SLOWEV SLOWOD

0.5 0.5

PRINT_ITER IPRSTA IPRMID IPRSTO

0 0 1

MAXANTIOSC NULAST

3

BROYDEN IBROYD N_ITER ALPHAM BROTRI

1 7 0.3 10000.0

----------- Interaction -----------

SKYRME-SET SKYRME

SV

SKYRME-STD ISTAND KETA_J KETA_W KETACM KETA_M

0 1 0 0 1

LANDAU LANODD X0_LAN X1_LAN G0_LAN G0PLAN G1_LAN G1PLAN

000 1.0 1.0 0.4 1.2 -0.19 0.62

EVE_SCA_TS RHO RHOD LPR TAU SCU DIV

1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.

ODD_SCA_TS SPI SPID LPS CUR KIS ROT

1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.

EVE_SCA_PM RHO RHOD LPR TAU SCU DIV

1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.

ODD_SCA_PM SPI SPID LPS CUR KIS ROT

1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.

---------- Pairing ------------

PAIRING IPAIRI

0

HFB IPAHFB

0

35

----------- Symmetries -------------

ROTATION IROTAT

1

SIMPLEXY ISIMPY

0

SIGNATUREY ISIGNY

0

PARITY IPARTY

0

TSIMPLEX3D ISIMTX ISIMTY ISIMTZ

0 0 0

---------- Configurations ----------

PHNONE_NEU PARTICLES HOLES

1 000 000

PHNONE_PRO PARTICLES HOLES

1 000 000

DIANON_NEU

24 23 0

DIANON_PRO

24 23 0

VACSIM_NEU SIMP SIMM

12 12

VACSIM_PRO SIMP SIMM

10 10

VACPAR_NEU PARP PARM

14 10

VACPAR_PRO PARP PARM

14 6

---- Parameters of the HO basis ----

BASIS_SIZE NOSCIL NLIMIT ENECUT

10 286 800.0

SURFAC_PAR INNUMB IZNUMB R0PARM

20 20 1.23

OPTI-GAUSS IOPTGS

1

GAUSHERMIT NXHERM NYHERM NZHERM

26 26 26

SURFAC_DEF LAMBDA MIU ALPHAR

-2 0 0.0

4 0 0.0

----------- Constraints ------------

OMEGAY OMEGAY

36

0.00

OMEGA_XYZ OMEHAX OMEHAY OMEHAZ ITILAX

0.000 0.000 0.000 0

MULTCONSTR LAMBDA MIU STIFFQ QASKED IFLAGQ

-2 0 0.25 0.200 1

2 2 0.25 0.000 1

------ Output-file parameters -----

EALLMINMAX EMINAL EMAXAL

-30.0 10.0

-------------- Files ---------------

REVIEWFILE FILREV

ca40_iso.rev

RECORDFILE FILREC

ca40_iso.rec

REPLAYFILE FILREP

ca40_iso.rec

REC_FIELDS FILFIC

ca40_iso.fil

REP_FIELDS FILFIP

ca40_iso.fil

COULOMFILE FILCOU

ca40_iso.cou

REVIEW IREVIE

0

RECORDSAVE IWRIRE

1

COULOMSAVE ICOULI ICOULO

1 1

FIELD_SAVE IWRIFI

1

FIELD_OLD IWRIOL

1

------ Starting the iteration ------

RESTART ICONTI

0

CONTFIELDS IFCONT

0

CONT_PAIRI IPCONT

0

------------ Calculate -------------

EXECUTE

37

------------ Next run -------------

ITERATIONS NOITER

30

SLOW_DOWN SLOWEV SLOWOD

0.5 0.5

BROYDEN IBROYD N_DUMM ALPHAM BROTRI

0 7 0.3 10000.0

MULTCONSTR LAMBDA MIU STIFFQ QASKED IFLAGQ

-2 0 0.25 0.200 0

2 2 0.25 0.000 0

COULOMBPAR ICOTYP ICOUDI ICOUEX

5 2 2

RESTART ICONTI

1

CONTFIELDS IFCONT

1

CONT_PAIRI IPCONT

0

------------ Calculate -------------

EXECUTE

------------ Next run -------------

ITERATIONS NOITER

1

SLOW_DOWN SLOWEV SLOWOD

1.0 1.0

KERNELFILE FILKER

ca40_iso.ker

SAVEKERNEL ISAKER

1

PARAKERNEL IPAKER NUASTA NUASTO NUGSTA NUGSTO

0 1 1 1 1

PROJECTGCM IPRGCM IPROMI IPROMA NUAKNO NUBKNO KPROJE IFRWAV ITOWAV IWRWAV

1 0 0 1 1 0 1 1 0

CUTOVERLAP ICUTOV CUTOVE CUTOVF

1 1.0E-05 1.0

PROJECTISO IPRGCM ISOSAD NBTKNO EPSISO ICSKIP IFERME

1 10 8 1.D-10 0 0

RESTART ICONTI

1

CONTFIELDS IFCONT

1

CONT_PAIRI IPCONT

0

38

------------ Calculate -------------

EXECUTE

------------ Terminate -------------

ALL_DONE

B Test Run Output

* *

* S I N G L E - C O R E V E R S I O N *

* *

* *

* HFODD HFODD HFODD HFODD HFODD HFODD HFODD HFODD *

* *

* *

* SKYRME-HARTREE-FOCK-BOGOLYUBOV CODE VERSION: 2.49S *

* *

* NO SYMMETRY-PLANES AND NO TIME-REVERSAL SYMMETRY *

* *

* DEFORMED CARTESIAN HARMONIC-OSCILLATOR BASIS *

* *

* *

* J. DOBACZEWSKI, B.G. CARLSSON, J. DUDEK, J. ENGEL *

* J. MCDONNELL, P. OLBRATOWSKI, P. POWALOWSKI, M. SADZIAK *

* J. SARICH, W. SATULA, N. SCHUNCK, J.A. SHEIKH *

* A. STASZCZAK, M. STOITSOV, P. TOIVANEN, M. ZALEWSKI *

* AND H. ZDUNCZUK *

* *

* INSTYTUT FIZYKI TEORETYCZNEJ, WARSZAWA *

* LAWRENCE LIVERMORE NATIONAL LABORATORY, USA *

* *

* 1993-2011 *

* *

* *

* CODE COMPILED WITH THE FOLLOWING ARRAY DIMENSIONS AND SWITCHES: *

* *

39

* *

* NDBASE = 680 NDSTAT = 680 NDXHRM = 40 NDYHRM = 40 NDZHRM = 40 *

* *

* NDMAIN = 16 NDMULT = 9 NDMULR = 4 NDLAMB = 9 NDITER = 5000 *

* *

* NDAKNO = 1 NDBKNO = 1 NDPROI = 20 NDCOUL = 80 NDPOLS = 25 *

* *

* NDPROT = 10 NDBTKN = 10 *

* *

* IPARAL = 0 I_CRAY = 0 *

* *

* *

* PRE-PROCESSOR OPTIONS: *

* *

* switch_port = 1 switch_diag = 3 switch_cray = 0 *

* *

* switch_nagl = 0 switch_quad = 0 switch_vect = 1 *

* *

...

* *

* BROYDEN METHOD IS: ON *

* *

* TRIGGERED ONLY WHEN STABILITY IS LOWER THAN : 10000.000 MEV *

* INITIAL SLOWING FACTOR (BEFORE TRIGGER) : 0.50 (=SLOWEV) *

* BROYDEN SLOWING FACTOR (AFTER TRIGGER) : 0.70 (=1-ALPHAM) *

* NUMBER OF ITERATIONS RETAINED IN MEMORY : 7 *

* *

...

* *

* ONLY THE ISOSPIN PROJECTION IS PERFORMED *

* 8 GAUSS-LEGENDRE KNOTS IS USED *

* *

...

* *

40

* CUT-OFF "EPSISO" = 0.00000000010000 ==> GOOD-T BASIS OF DIM = 4 *

* *

* *

* ISOSPIN-MIXED EIGENSTATES *

* ------------------------- *

* *

* N EIGENENERGY i T |C_i|^2 Re[C_i] Im[C_i] *

* *

* 1 -342.860677 1 0 0.994703 0.997348 0.000000 *

* 2 1 0.005296 0.072772 0.000000 *

* 3 2 0.000002 0.001316 0.000000 *

* 4 3 0.000000 -0.000061 0.000000 *

* DOMINANT AMPLITUDE SQUARED EQUALS: 0.9947025220 AND CORRESPONDS TO T = 0 *

* COULOMB MIXING IN THIS STATE IS: 0.0052974780 [0.529748%] *

* *

* *

* 2 -300.253660 1 0 0.005276 0.072636 0.000000 *

* 2 1 0.988062 -0.994013 0.000000 *

* 3 2 0.006659 -0.081605 0.000000 *

* 4 3 0.000003 -0.001655 0.000000 *

* DOMINANT AMPLITUDE SQUARED EQUALS: 0.9880618341 AND CORRESPONDS TO T = 1 *

* COULOMB MIXING IN THIS STATE IS: 0.0119381659 [1.193817%] *

* *

* *

* 3 -258.016938 1 0 0.000021 -0.004628 0.000000 *

* 2 1 0.006609 0.081296 0.000000 *

* 3 2 0.985082 -0.992513 0.000000 *

* 4 3 0.008288 -0.091039 0.000000 *

* DOMINANT AMPLITUDE SQUARED EQUALS: 0.9850815887 AND CORRESPONDS TO T = 2 *

* COULOMB MIXING IN THIS STATE IS: 0.0149184113 [1.491841%] *

* *

* *

* 4 -215.384252 1 0 0.000000 0.000241 0.000000 *

* 2 1 0.000033 -0.005784 0.000000 *

* 3 2 0.008257 0.090869 0.000000 *

* 4 3 0.991709 -0.995846 0.000000 *

* DOMINANT AMPLITUDE SQUARED EQUALS: 0.9917092280 AND CORRESPONDS TO T = 3 *

* COULOMB MIXING IN THIS STATE IS: 0.0082907720 [0.829077%] *

* *

* *

41

References

[1] J. Dobaczewski and J. Dudek, Comput. Phys. Commun. 102, 166 (1997).

[2] J. Dobaczewski and J. Dudek, Comput. Phys. Commun. 102, 183 (1997).

[3] J. Dobaczewski and J. Dudek, Comput. Phys. Commun. 131, 164 (2000).

[4] J. Dobaczewski and P. Olbratowski, Comput. Phys. Commun. 158, 158 (2004).

[5] J. Dobaczewski and P. Olbratowski, Comput. Phys. Commun. 167, 214 (2005).

[6] J. Dobaczewski, W. Satu la, B.G. Carlsson, J. Engel, P. Olbratowski, P. Powa lowski, M.
Sadziak, J. Sarich, N. Schunck, A. Staszczak, M.V. Stoitsov, M. Zalewski, and H. Zduńczuk,
Comput. Phys. Commun. 180, 2361 (2009).

[7] J. Dobaczewski, W. Satu la, B.G. Carlsson, J. Engel, P. Olbratowski, P. Powa lowski, M.
Sadziak, J. Sarich, N. Schunck, A. Staszczak, M.V. Stoitsov, M. Zalewski, and H. Zduńczuk,
HFODD (v2.40h) User’s Guide: arXiv:0909.3626 (2009).

[8] W. Heisenberg, Z. Phys. 77, 1 (1932).

[9] E.P. Wigner, Phys. Rev. 51, 106 (1937).

[10] C.A. Engelbrecht and R.H. Lemmer, Phys. Rev. Lett. 24, 607 (1970).

[11] E. Caurier, A. Poves, and A. Zucker, Phys. Lett. B 96, 11 (1980); 96, 15 (1980).

[12] M. Rafalski, W. Satu la, and J. Dobaczewski, Int. J. Mod. Phys. E18, 958 (2009).

[13] W. Satu la, J. Dobaczewski, W. Nazarewicz, and M. Rafalski, Phys. Rev. Lett. 103, 012502
(2009).

[14] W. Satu la, J. Dobaczewski, W. Nazarewicz, and M. Rafalski, Phys. Rev. C 81, 054310
(2010).

[15] W. Satu la, J. Dobaczewski, W. Nazarewicz, and M. Rafalski, submitted to Acta Physica
Polonica (2010); arXiv:1010.3099.

[16] W. Satu la, J. Dobaczewski, W. Nazarewicz, M. Borucki, and M. Rafalski, submitted to Int.
J. Mod. Phys. (2010); arXiv:1010.5053 .

[17] W. Satu la, J. Dobaczewski, W. Nazarewicz, and M. Rafalski, submitted to Phys. Rev. Lett.
(2011); arXiv:1101.0139.

[18] D.A. Varshalovich, A.N. Moskalev, and V.K. Khersonskii, Quantum Theory of Angular

Momentum (World Scientific, Singapore, 1988).

[19] M. Anguiano, J.L. Egido, and L.M. Robledo, Nucl. Phys. A696, 467 (2001).

[20] L.M. Robledo, Int. J. Mod. Phys. E 16, 337 (2007).

42

[21] J. Dobaczewski, M.V. Stoitsov, W. Nazarewicz, and P.-G. Reinhard, Phys. Rev. C 76,
054315 (2007).

[22] H. Zduńczuk, J. Dobaczewski, and W. Satu la, Int. J. Mod. Phys. E 16, 377 (2007).

[23] I.S. Towner and J.C. Hardy, Phys. Rev. C 77, 025501 (2008).

[24] H. Zduńczuk, W. Satu la, J. Dobaczewski, and M. Kosmulski, Phys. Rev. C 76, 044304
(2007).

[25] A.L. Goodman, Nucl. Phys. A 352, 45 (1981).

[26] M. Diebel, K. Albrecht and R.W. Hasse, Nucl. Phys. A 355, 66 (1981).

[27] P. Bonche, S. Levit and D. Vautherin, Nucl. Phys. A 436, 265 (1985); 427, 278(1984).

[28] J.L. Egido, L.M. Robledo and V. Martin, Phys. Rev. Lett. 85, 26 (2000).

[29] V. Martin, J.L. Egido and L.M. Robledo, Phys. Rev. C 68, 034327(2003).

[30] J. Dobaczewski, H. Flocard and J. Treiner, Nucl. Phys. A 422, 103 (1984).

[31] J.C. Pei, W. Nazarewicz, J. A. Sheikh and A. K. Kerman, Phys. Rev. Lett. 102, 192501
(2009).

[32] J.A. Sheikh, W. Nazarewicz and J.C. Pei, Phys. Rev. C 80, 011302(R) (2009).

[33] H.J. Lipkin, Ann. of Phys., 9, 272 (1960).

[34] J. Dobaczewski, J. Phys. G: Nucl. Part. Phys. 36, 105105 (2009).

[35] P. Ring and P. Schuck, The Nuclear Many-Body Problem (Springer-Verlag, Berlin, 1980).

[36] V.M. Strutinsky, Nucl. Phys. A 95, 420 (1967).

[37] V.M. Strutinsky, Nucl. Phys. A 122, 1 (1968).

[38] M.J. Giannoni and P. Quentin, Phys. Rev. C 21, 2060 (1980); Phys. Rev. C 21, 2076
(1980).

[39] M. Bolsterli, E.O. Fiset, J.R. Nix, and J.L. Norton, Phys. Rev. C5, (1972) 1050.

[40] T.R. Werner and J. Dudek, Atomic Data and Nucl. Data Tables 50 (1992) 179; AIP
Conference Proceedings 259, ed. by J. Dudek and B. Haas, (American Institute of Physics,
New York, 1992), p. 683.

[41] A.T. Kruppa, M. Bender, W. Nazarewicz, P.-G. Reinhard, T. Vertse, and S. Ćwiok, Phys.
Rev. C 61, 034313 (2000).

[42] T. Vertse, A.T. Kruppa, and W. Nazarewicz, Phys. Rev. C 61, 064317 (2000).

[43] B. Gall, P. Bonche, J. Dobaczewski, H. Flocard, and P.-H. Heenen, Z. Phys. A348, 183
(1994).

43

[44] J. Dobaczewski, P. Borecki, W. Nazarewicz, and M.V. Stoitsov, Eur. Phys. J. A25,s01,
541 (2005).

[45] M.R. Hestenes, J. Optim. Theory Appl. 4, 303 (1969).

[46] M.J.D. Powell, Optimization, ed. R. Fletcher (Academic Press, New-York 1969), p. 283.

[47] A. Staszczak, M. Stoitsov, A. Baran, and W. Nazarewicz, Eur. Phys. J. A 46, 85 (2010).

[48] J. Dechargé and D. Gogny, Phys. Rev. C21, 1568 (1980).

[49] W. Younes and D. Gogny, Phys. Rev. C 80, 054313 (2009).

[50] M.V. Stoitsov, J. Dobaczewski, W. Nazarewicz, and P. Ring, Comput. Phys. Commun.
167, 43 (2005).

[51] M.V. Stoitsov, W. Nazarewicz, N. Schunck, IJMP E 18 816 (2009).

[52] J. Dobaczewski, M. Stoitsov, and W. Nazarewicz, AIP Conference Proceedings 726, 52
(2004).

[53] N. Schunck, J. Dobaczewski, J. Moré, J. McDonnell, W. Nazarewicz, J. Sarich and M. V.
Stoitsov, Phys. Rev. C 81 024316 (2010).

[54] K.T.R. Davies and S.J. Krieger, Can. J. Phys. 69, 62 (1991).

[55] A. Baran, A. Bulgac, M. McNeil Forbes, G. Hagen, W. Nazarewicz, N. Schunck, and M.V.
Stoitsov, Phys. Rev. C 78, 014318 (2008).

[56] A. Staszczak, A. Baran, J. Dobaczewski and W. Nazarewicz, Phys. Rev. C 80, 014309
(2009).

[57] E. Chabanat, Interactions effectives pour des conditions extrêmes d’isospin, Université
Claude Bernard Lyon-1, Thesis 1995, LYCEN T 9501, unpublished.

[58] E. Chabanat, P. Bonche, P. Haensel, J. Meyer, and R. Schaeffer, Nucl. Phys. A 635, 231
(1998).

[59] M. Kortelainen, T. Lesinski, J. Moré, W. Nazarewicz, J. Sarich, N. Schunck, M. V. Stoitsov,
and S. Wild, Phys. Rev. C 82, 024313 (2010).

44

